Skip to main content
Log in

Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common and severe neurologic diseases. The mechanisms of epilepsy are still not fully understood. Dock3 (dedicator of cytokinesis 3) is one of the new kinds of guanine–nucleotide exchange factors (GEF) and plays an important role in neuronal synaptic plasticity and cytoskeleton rearrangement; the same mechanisms were also found in epilepsy. However, little is known regarding the expression of Dock3 in the epileptic brain and whether Dock3 interventions affect the epileptic process. In this study, we showed that the expression of Dock3 significantly increased in IE patients and a lithium–pilocarpine epilepsy model compared with the controls. Inhibition of Dock3 by Dock3 shRNA impaired the severity of status epilepticus in the acute stage and decreased the spontaneous recurrent seizures times in the chronic stage of lithium–pilocarpine model and decreased the expression of rac1-GTP. Consistent with decreased expression of Dock3, the latent period in a pentylenetetrazole kindling model also increased. Our results demonstrated that the increased expression of Dock3 in the brain is associated with epileptogenesis and specific inhibition of Dock3 may be a potential target in preventing the development of epilepsy in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. French J (2007) Refractory epilepsy: clinical overview. Epilepsia 48:3

    Article  PubMed  Google Scholar 

  2. McCorry D, Chadwick D, Marson A (2004) Current drug treatment of epilepsy in adults. Lancet Neurol 3(12):729–735. doi:10.1016/S1474-4422(04)00935-4

    Article  CAS  PubMed  Google Scholar 

  3. Pitkanen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10(2):173–186. doi:10.1016/S1474-4422(10)70310-0

    Article  PubMed  Google Scholar 

  4. Côté J, Vuori K (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17(8):383

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meller N, Merlot S, Guda C (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118(Pt 21):4937

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Peto CA, Shelton GD, Mizisin A, Sawchenko PE, Schubert D (2009) Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience 29(1):118–130. doi:10.1523/JNEUROSCI.3985-08.2009

    Article  Google Scholar 

  7. Namekata K, Harada C, Guo X, Kimura A, Kittaka D, Watanabe H, Harada T (2012) Dock3 stimulates axonal outgrowth via GSK-3beta-mediated microtubule assembly. The Journal of neuroscience : the official journal of the Society for Neuroscience 32(1):264–274. doi:10.1523/JNEUROSCI.4884-11.2012

    Article  CAS  Google Scholar 

  8. Chen Q, Chen TJ, Letourneau PC, Costa Lda F, Schubert D (2005) Modifier of cell adhesion regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(2):281–290. doi:10.1523/JNEUROSCI.3692-04.2005

    Article  Google Scholar 

  9. Miyamoto Y, Yamauchi J (2010) Cellular signaling of Dock family proteins in neural function. Cell Signal 22(2):175–182. doi:10.1016/j.cellsig.2009.09.036

    Article  CAS  PubMed  Google Scholar 

  10. Namekata K, Harada C, Taya C, Guo X, Kimura H, Parada LF, Harada T (2010) Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex. Proc Natl Acad Sci U S A 107(16):7586–7591. doi:10.1073/pnas.0914514107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall C (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510

    Article  CAS  PubMed  Google Scholar 

  12. Cote JF, Vuori K (2002) Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J Cell Sci 115(Pt 24):4901–4913

    Article  CAS  PubMed  Google Scholar 

  13. Namekata K, Enokido Y, Iwasawa K, Kimura H (2004) MOCA induces membrane spreading by activating Rac1. The Journal of biological chemistry 279(14):14331

    Article  CAS  PubMed  Google Scholar 

  14. Grimsley C, Kinchen J, Tosello-Trampont A, Brugnera E, Haney L, Lu M, Chen Q, Klingele D et al (2004) Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. The Journal of biological chemistry 279(7):6087

    Article  CAS  PubMed  Google Scholar 

  15. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science (New York, NY) 279 (5350):509

  16. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153

    CAS  PubMed  Google Scholar 

  17. Xu Y, Zeng K, Han Y, Wang L, Chen D, Xi Z, Wang H, Wang X et al (2012) Altered expression of CX3CL1 in patients with epilepsy and in a rat model. The American journal of pathology 180(5):1950–1962

    Article  CAS  PubMed  Google Scholar 

  18. Han Y, Yin H, Xu Y, Zhu Q, Luo J, Wang X, Chen G (2012) Increased expression of calponin-3 in epileptic patients and experimental rats. Exp Neurol 233(1):430–437

    Article  CAS  PubMed  Google Scholar 

  19. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II Motor seizure Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  20. Maciejak P, Szyndler J, Lehner M, Turzynska D, Sobolewska A, Bidzinski A, Plaznik A (2010) The differential effects of protein synthesis inhibition on the expression and reconsolidation of pentylenetetrazole kindled seizures. Epilepsy & behavior : E&B 18(3):193–200. doi:10.1016/j.yebeh.2010.04.005

    Article  Google Scholar 

  21. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Access Online via Elsevier

  22. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y et al (2008) Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med 14(12):1370–1376

    Article  CAS  PubMed  Google Scholar 

  23. Zhang QG, Wang R, Han D, Dong Y, Brann DW (2009) Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res 1265:138–147. doi:10.1016/j.brainres.2009.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang X, Peng X, Fang M, Zhou C, Zhao F, Zhang Y, Xu Y, Zhu Q et al (2011) Up-regulation of apelin in brain tissue of patients with epilepsy and an epileptic rat model. Peptides 32(9):1793

    Article  CAS  PubMed  Google Scholar 

  25. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30(11):1845–1855. doi:10.1002/elps.200800720

    Article  CAS  PubMed  Google Scholar 

  26. Martinez L, Tejada-Simon M (2011) Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology 61(1–2):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Q, He S, Hu X, Yu J, Zhou Y, Zheng J, Zhang S, Zhang C et al (2007) Differential roles of NR2A-and NR2B-containing NMDA receptors in activity-dependent brain-derived neurotrophic factor gene regulation and limbic epileptogenesis. J Neurosci Off J Soc Neurosci 27(3):542

    Article  CAS  Google Scholar 

  28. Morimoto K, Fahnestock M, Racine R (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73(1):1

    Article  CAS  PubMed  Google Scholar 

  29. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266. doi:10.1056/NEJMra022308

    Article  PubMed  Google Scholar 

  30. Chen Q, Yoshida H, Schubert D, Maher P, Mallory M, Masliah E (2001) Presenilin binding protein is associated with neurofibrillary alterations in Alzheimer’s disease and stimulates tau phosphorylation. The American journal of pathology 159(5):1597–1602. doi:10.1016/S0002-9440(10)63005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Q, Kimura H, Schubert D (2002) A novel mechanism for the regulation of amyloid precursor protein metabolism. J Cell Biol 158(1):79–89. doi:10.1083/jcb.200110151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Silva M, Elliott K, Dahl H, Fitzpatrick E, Wilcox S, Delatycki M, Williamson R, Efron D et al (2003) Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet 40(10):733–740

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schauwecker P (2010) Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Exp Neurol 224(1):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (no. 30870877, no. 81071039, no. 81220108010, and no. 81171197). We sincerely appreciate Xuanwu Hospital, Beijing Tiantan Hospital of the Capital University of Medical Sciences and Daping Hospital of the Third Military Medical University for supplying the surgery samples. We sincerely thank the local ethics committee and the National Institutes of Health of China for their support.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mi, X., Chen, L. et al. Dock3 Participate in Epileptogenesis Through rac1 Pathway in Animal Models. Mol Neurobiol 53, 2715–2725 (2016). https://doi.org/10.1007/s12035-015-9406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9406-9

Keywords

Navigation