Skip to main content
Log in

Mild Hypothermia Combined with Hydrogen Sulfide Treatment During Resuscitation Reduces Hippocampal Neuron Apoptosis Via NR2A, NR2B, and PI3K-Akt Signaling in a Rat Model of Cerebral Ischemia-Reperfusion Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We investigated whether mild hypothermia combined with sodium hydrosulfide treatment during resuscitation improves neuron survival following cerebral ischemia-reperfusion injury beyond that observed for the individual treatments. Male Sprague-Dawley rats were divided into seven groups (n = 20 for each group). All rats underwent Pulsinelli 4-vessel occlusion. Ischemia was induced for 15 min using ligatures around the common carotid arteries, except for the sham group. Immediately after initiating reperfusion, the mild hypothermia (MH), sodium hydrosulfide (NaHS), hydroxylamine (HA), MH + NaHS, MH + HA, and ischemia-reperfusion (I/R) control groups received an intraperitoneal injection of saline, sodium hydrosulfide, hydroxylamine, sodium hydrosulfide, hydroxylamine, and saline, respectively, and mild hypothermia (32 to 33 °C) was induced in the MH, MH + NaHS, and MH + HA groups for 6 h. The levels of NR2A, NR2B, p-Akt, and p-Gsk-3β in the hippocampus of the MH, NaHS, and MH + NaHS groups were higher than those in the I/R control group, with the highest levels observed in the MH + NaHS group (P < 0.05). Treatment with hydroxylamine reduced the levels of these proteins in the HA and MH + HA groups, compared with the I/R control and MH groups, respectively. The apoptotic index of the CA1 region of the hippocampus was 45.2, 66.5, 63.5, and 84.8 % in the MH + NaHS, MH, NaHS, and I/R control groups, respectively (P < 0.05), indicating that the combination treatment shifted the NR2A/NR2B balance in favor of synaptic neuron stimulation and phosphatidylinositol 3ʹ-kinase (PI3K)/Akt signaling. The combination of mild hypothermia and sodium hydrosulfide treatment for resuscitation following ischemia-reperfusion injury was more beneficial for reducing hippocampal apoptosis and pathology than that of mild hypothermia or hydrogen sulfide treatment alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Thrift AG, Cadilhac DA, Thayabaranathan T, Howard G, Howard VJ, Rothwell PM, Donnan GA (2014) Global stroke statistics. Int J Stroke 9(1):6–18. doi:10.1111/ijs.12245

    Article  PubMed  Google Scholar 

  2. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL et al (2014) Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913):245–255

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krueger M, Bechmann I, Immig K, Reichenbach A, Hartig W, Michalski D (2015) Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab 35(2):292–303. doi:10.1038/jcbfm.2014.199

    Article  CAS  PubMed  Google Scholar 

  4. Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739(1-2):88–96

    Article  CAS  PubMed  Google Scholar 

  5. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239(1):57–69

    Article  CAS  PubMed  Google Scholar 

  6. Liu YH, Lu M, Hu LF, Wong PT, Webb GD, Bian JS (2012) Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 17(1):141–185. doi:10.1089/ars.2011.4005

    Article  CAS  PubMed  Google Scholar 

  7. Yu YP, Chi XL, Liu LJ (2014) A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury. ScientificWorldJournal 2014:432318. doi:10.1155/2014/432318

    PubMed  PubMed Central  Google Scholar 

  8. Tan BH, Wong PT, Bian JS (2010) Hydrogen sulfide: a novel signaling molecule in the central nervous system. Neurochem Int 56(1):3–10. doi:10.1016/j.neuint.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Yin J, Tu C, Zhao J, Ou D, Chen G, Liu Y, Xiao X (2013) Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats. Brain Res 1491:188–196. doi:10.1016/j.brainres.2012.10.046

    Article  CAS  PubMed  Google Scholar 

  10. Gheibi S, Aboutaleb N, Khaksari M, Kalalian-Moghaddam H, Vakili A, Asadi Y, Mehrjerdi FZ, Gheibi A (2014) Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J Mol Neurosci 54(2):264–270. doi:10.1007/s12031-014-0284-9

    Article  CAS  PubMed  Google Scholar 

  11. Kimura H (2000) Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun 267(1):129–133. doi:10.1006/bbrc.1999.1915

    Article  CAS  PubMed  Google Scholar 

  12. Valera E, Sanchez-Martin FJ, Ferrer-Montiel AV, Messeguer A, Merino JM (2008) NMDA-induced neuroprotection in hippocampal neurons is mediated through the protein kinase A and CREB (cAMP-response element-binding protein) pathway. Neurochem Int 53(5):148–154. doi:10.1016/j.neuint.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  13. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. doi:10.1038/nn835

    CAS  PubMed  Google Scholar 

  14. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J et al (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857. doi:10.1523/JNEUROSCI.0116-07.2007

    Article  CAS  PubMed  Google Scholar 

  15. Luo T, Wu WH, Chen BS (2011) NMDA receptor signaling: death or survival? Front Biol (Beijing) 6(6):468–476. doi:10.1007/s11515-011-1187-6

    Article  CAS  Google Scholar 

  16. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. doi:10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11(3):297–305

    Article  CAS  PubMed  Google Scholar 

  18. Noshita N, Lewen A, Sugawara T, Chan PH (2002) Akt phosphorylation and neuronal survival after traumatic brain injury in mice. Neurobiol Dis 9(3):294–304. doi:10.1006/nbdi.2002.0482

    Article  CAS  PubMed  Google Scholar 

  19. Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488. doi:10.1038/onc.2008.313

    Article  CAS  PubMed  Google Scholar 

  20. Karibe H, Zarow GJ, Graham SH, Weinstein PR (1994) Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 14(4):620–627. doi:10.1038/jcbfm.1994.77

    Article  CAS  PubMed  Google Scholar 

  21. Zhao H, Steinberg GK, Sapolsky RM (2007) General versus specific actions of mild-moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 27(12):1879–1894. doi:10.1038/sj.jcbfm.9600540

    Article  CAS  PubMed  Google Scholar 

  22. Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7(6):729–738. doi:10.1038/jcbfm.1987.127

    Article  CAS  PubMed  Google Scholar 

  23. Yenari MA, Han HS (2012) Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 13(4):267–278. doi:10.1038/nrn3174

    CAS  PubMed  Google Scholar 

  24. Erecinska M, Thoresen M, Silver IA (2003) Effects of hypothermia on energy metabolism in Mammalian central nervous system. J Cereb Blood Flow Metab 23(5):513–530. doi:10.1097/01.WCB.0000066287.21705.21

    Article  CAS  PubMed  Google Scholar 

  25. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(6738 Suppl):A7–A14

    Article  CAS  PubMed  Google Scholar 

  26. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20(7):904–910

    Article  CAS  PubMed  Google Scholar 

  27. Duan M, Li D, Xu J (2002) Mechanisms of selective head cooling for resuscitating damaged neurons during post-ischemic reperfusion. Chin Med J (Engl) 115(1):94–98

    Google Scholar 

  28. Qiu L (2011) Hypothermia in traumatic brain injury—a literature review. J Intensive Care Soc 12(3):201–214

    Article  Google Scholar 

  29. van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR (2007) Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain 130(Pt 12):3063–3074. doi:10.1093/brain/awm083

    Article  PubMed  Google Scholar 

  30. Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R (2015) Can therapeutic hypothermia be guided by advanced neuromonitoring in neurocritical care patients? A review. Ther Hypothermia Temp Manag. doi:10.1089/ther.2014.0028

    PubMed  Google Scholar 

  31. Pulsinelli WA, Levy DE, Duffy TE (1983) Cerebral blood flow in the four-vessel occlusion rat model. Stroke 14(5):832–834

    Article  CAS  PubMed  Google Scholar 

  32. Li Z, Wang Y, Xie Y, Yang Z, Zhang T (2011) Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochem Res 36(10):1840–1849. doi:10.1007/s11064-011-0502-6

    Article  CAS  PubMed  Google Scholar 

  33. Carboni S, Antonsson B, Gaillard P, Gotteland JP, Gillon JY, Vitte PA (2005) Control of death receptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase in hippocampal CA1 neurones following global transient ischaemia. J Neurochem 92(5):1054–1060. doi:10.1111/j.1471-4159.2004.02925.x

    Article  CAS  PubMed  Google Scholar 

  34. Kimura H (2014) Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal 20(5):783–793. doi:10.1089/ars.2013.5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37(Pt 6):1147–1160. doi:10.1042/BST0371147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papadia S, Hardingham GE (2007) The dichotomy of NMDA receptor signaling. Neuroscientist 13(6):572–579. doi:10.1177/10738584070130060401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Z, Li C, Manuel ML, Yuan S, Kevil CG, McCarter KD, Lu W, Sun H (2015) Role of hydrogen sulfide in early blood-brain barrier disruption following transient focal cerebral ischemia. PLoS One 10(2), e0117982. doi:10.1371/journal.pone.0117982

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    CAS  PubMed  Google Scholar 

  39. Zhao H, Shimohata T, Wang JQ, Sun G, Schaal DW, Sapolsky RM, Steinberg GK (2005) Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci 25(42):9794–9806. doi:10.1523/JNEUROSCI.3163-05.2005

    Article  CAS  PubMed  Google Scholar 

  40. Shao ZH, Sharp WW, Wojcik KR, Li CQ, Han M, Chang WT, Ramachandran S, Li J et al (2010) Therapeutic hypothermia cardioprotection via Akt- and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 298(6):H2164–H2173. doi:10.1152/ajpheart.00994.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hu B, Friberg H, Wieloch T (2011) Protracted tyrosine phosphorylation of the glutamate receptor subunit NR2 in the rat hippocampus following transient cerebral ischemia is prevented by intra-ischemic hypothermia. Ther Hypothermia Temp Manag 1(3):159–164. doi:10.1089/ther.2011.0013

    Article  PubMed  PubMed Central  Google Scholar 

  42. Markarian GZ, Lee JH, Stein DJ, Hong SC (1996) Mild hypothermia: therapeutic window after experimental cerebral ischemia. Neurosurgery 38(3):542–550, discussion 551

    CAS  PubMed  Google Scholar 

  43. Liu Y, Zhao J, Xiao X, Yin J, Tu C, Ou D, Chen G (2014) P59: the protective effects of exogenous hydrogen sulfide against global cerebral ischemia/reperfusion injury in rats. Nitric Oxide 39:S33–S34

    Article  Google Scholar 

  44. Geng Y, Li E, Mu Q, Zhang Y, Wei X, Li H, Cheng L, Zhang B (2015) Hydrogen sulfide inhalation decreases early blood-brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab 35(3):494–500. doi:10.1038/jcbfm.2014.223

    Article  CAS  PubMed  Google Scholar 

  45. Sodha NR, Sellke FW (2015) Attenuation of inflammatory responses by hydrogen sulfide (H(2)S) in ischemia/reperfusion injury. Methods Enzymol 555:127–144. doi:10.1016/bs.mie.2014.11.041

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru-Meng Ma, Xiao-Lei Miao or Man-Lin Duan.

Additional information

Hai-Bin Dai, Miao-Miao Xu, Jia Lv and Xiang-Jun Ji contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, HB., Xu, MM., Lv, J. et al. Mild Hypothermia Combined with Hydrogen Sulfide Treatment During Resuscitation Reduces Hippocampal Neuron Apoptosis Via NR2A, NR2B, and PI3K-Akt Signaling in a Rat Model of Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 53, 4865–4873 (2016). https://doi.org/10.1007/s12035-015-9391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9391-z

Keywords

Navigation