Molecular Neurobiology

, Volume 53, Issue 7, pp 4343–4351 | Cite as

Impact of Common Variations in PLD3 on Neuroimaging Phenotypes in Non-demented Elders

  • Chong Wang
  • Hui-Fu Wang
  • Meng-Shan Tan
  • Ying Liu
  • Teng Jiang
  • Dao-Qiang Zhang
  • Lan TanEmail author
  • Jin-Tai YuEmail author
  • Alzheimer’s Disease Neuroimaging Initiative


Rare variants of phospholipase D3 (PLD3) have been identified as Alzheimer’s disease (AD) susceptibility loci, whereas little is known about the potential role of common variants in the progression of AD. To examine the impact of genetic variations in PLD3 on neuroimaging phenotypes in a large non-demented population. A total of 261 normal cognition (NC) and 456 mild cognitive impairment (MCI) individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database are included in our analysis. Multiple linear regression models were applied to examine the association between four single-nucleotide polymorphisms (SNPs; rs7249146, rs4490097, rs12151243, and rs10407447) with the florbetapir retention on florbetapir 18F amyloid positron emission tomography (AV45-PET), the cerebral metabolic rate for glucose (CMRgl) on 18F-fluorodeoxyglucose PET (FDG-PET), and regional volume on magnetic resonance imaging (MRI) at baseline and in the cohort study. We did not detect any significant associations of PLD3 SNPs with florbetapir retention on AV45-PET. In the analysis of FDG-PET, rs10407447 was associated with the CMRgl in the left angular gyrus and bilateral posterior cingulate cortex in the MCI group. Regarding the MRI analysis, rs10407447 was also associated with bilateral inferior lateral ventricle and lateral ventricle volume in MCI group. The main findings of our study provide evidence that support the possible role of PLD3 common variants in influencing AD-related neuroimaging phenotypes. Nevertheless, further work is necessary to explain the functional mechanisms of differences and confirm the causal variants.


Alzheimer’s disease PLD3 Neuroimaging Association 



Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). This research was also supported by National Natural Science Foundation of China (81171209, 81371406, 81000544), the Shandong Provincial Outstanding Medical Academic Professional Program, and the Qingdao Key Health Discipline Development Fund.

Conflict of interest

The authors declare that they have no competing interests

Supplementary material

12035_2015_9370_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1184 kb)


  1. 1.
    Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63(2):168–174. doi: 10.1001/archpsyc.63.2.168 CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang T, Yu JT, Tan L (2012) Novel disease-modifying therapies for Alzheimer’s disease. J Alzheimer’s Dis : JAD 31(3):475–492. doi: 10.3233/JAD-2012-120640 PubMedGoogle Scholar
  4. 4.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093. doi: 10.1038/ng.440 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099. doi: 10.1038/ng.439 CrossRefPubMedGoogle Scholar
  6. 6.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43(8):1467–1472CrossRefPubMedGoogle Scholar
  7. 7.
    Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J et al (2014) Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 505(7484):550–554. doi: 10.1038/nature12825 CrossRefPubMedGoogle Scholar
  8. 8.
    Mattay VS, Goldberg TE, Sambataro F, Weinberger DR (2008) Neurobiology of cognitive aging: insights from imaging genetics. Biol Psychol 79(1):9–22. doi: 10.1016/j.biopsycho.2008.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Salmon DP, Lange KL (2001) Cognitive screening and neuropsychological assessment in early Alzheimer’s disease. Clin Geriatr Med 17(2):229–254CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6 CrossRefPubMedGoogle Scholar
  11. 11.
    Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S, Risacher SL, Nho K et al (2010) Alzheimer’s Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement : J Alzheimers Assoc 6(3):265–273. doi: 10.1016/j.jalz.2010.03.013 CrossRefGoogle Scholar
  12. 12.
    Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, Weiner MW, Jagust WJ (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7):1207–1218. doi: 10.1016/j.neurobiolaging.2009.07.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang J, Yu JT, Tan L (2014) PLD3 in Alzheimer’s Disease. Mol Neurobiol. doi: 10.1007/s12035-014-8779-5 Google Scholar
  14. 14.
    Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F et al (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305(3):275–283. doi: 10.1001/jama.2010.2008 CrossRefPubMedGoogle Scholar
  15. 15.
    Small GW, Mazziotta JC, Collins MT, Baxter LR, Phelps ME, Mandelkern MA, Kaplan A, La Rue A et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273(12):942–947CrossRefPubMedGoogle Scholar
  16. 16.
    Jagust WJ, Landau SM (2012) Apolipoprotein E, not fibrillar beta-amyloid, reduces cerebral glucose metabolism in normal aging. J Neurosci : Off J Soc Neurosci 32(50):18227–18233. doi: 10.1523/JNEUROSCI.3266-12.2012 CrossRefGoogle Scholar
  17. 17.
    Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J (2004) Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Natl Acad Sci U S A 101(1):284–289. doi: 10.1073/pnas.2635903100 CrossRefPubMedGoogle Scholar
  18. 18.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94. doi: 10.1002/ana.410420114 CrossRefPubMedGoogle Scholar
  19. 19.
    Cattaneo Z, Silvanto J, Pascual-Leone A, Battelli L (2009) The role of the angular gyrus in the modulation of visuospatial attention by the mental number line. NeuroImage 44(2):563–568. doi: 10.1016/j.neuroimage.2008.09.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson SC, Christian BT, Okonkwo OC, Oh JM, Harding S, Xu G, Hillmer AT, Wooten DW et al (2014) Amyloid burden and neural function in people at risk for Alzheimer’s disease. Neurobiol Aging 35(3):576–584. doi: 10.1016/j.neurobiolaging.2013.09.028 CrossRefPubMedGoogle Scholar
  21. 21.
    Wu TC, Wilde EA, Bigler ED, Yallampalli R, McCauley SR, Troyanskaya M, Chu Z, Li X et al (2010) Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. J Neurotrauma 27(2):303–307. doi: 10.1089/neu.2009.1110 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chou YY, Lepore N, de Zubicaray GI, Carmichael OT, Becker JT, Toga AW, Thompson PM (2008) Automated ventricular mapping with multi-atlas fluid image alignment reveals genetic effects in Alzheimer’s disease. NeuroImage 40(2):615–630. doi: 10.1016/j.neuroimage.2007.11.047 CrossRefPubMedGoogle Scholar
  23. 23.
    Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL, Fogarty J, Bartha R (2008) Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain : J Neurol 131(Pt 9):2443–2454. doi: 10.1093/brain/awn146 CrossRefGoogle Scholar
  24. 24.
    Ridha BH, Barnes J, Bartlett JW, Godbolt A, Pepple T, Rossor MN, Fox NC (2006) Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurol 5(10):828–834. doi: 10.1016/S1474-4422(06)70550-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Qiu A, Fennema-Notestine C, Dale AM, Miller MI (2009) Regional shape abnormalities in mild cognitive impairment and Alzheimer’s disease. NeuroImage 45(3):656–661CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pedersen KM, Finsen B, Celis JE, Jensen NA (1998) Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain. J Biol Chem 273(47):31494–31504CrossRefPubMedGoogle Scholar
  27. 27.
    Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS et al (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci : Off J Soc Neurosci 23(3):994–1005Google Scholar
  28. 28.
    Kremen WS, Prom-Wormley E, Panizzon MS, Eyler LT, Fischl B, Neale MC, Franz CE, Lyons MJ et al (2010) Genetic and environmental influences on the size of specific brain regions in midlife: the VETSA MRI study. NeuroImage 49(2):1213–1223. doi: 10.1016/j.neuroimage.2009.09.043 CrossRefPubMedGoogle Scholar
  29. 29.
    Madsen SK, Ho AJ, Hua X, Saharan PS, Toga AW, Jack CR Jr, Weiner MW, Thompson PM (2010) 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol Aging 31(8):1312–1325. doi: 10.1016/j.neurobiolaging.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chong Wang
    • 1
    • 2
  • Hui-Fu Wang
    • 3
  • Meng-Shan Tan
    • 1
  • Ying Liu
    • 1
  • Teng Jiang
    • 4
  • Dao-Qiang Zhang
    • 5
  • Lan Tan
    • 1
    • 3
    Email author
  • Jin-Tai Yu
    • 1
    • 6
    Email author
  • Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
  2. 2.Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
  3. 3.Department of Neurology, Qingdao Municipal HospitalNanjing Medical UniversityQingdaoChina
  4. 4.Department of Neurology, Nanjing First HospitalNanjing Medical UniversityQingdaoChina
  5. 5.Department of Computer Science and EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  6. 6.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations