Skip to main content

Advertisement

Log in

Enhanced Neuroprotection of Acetyl-11-Keto-β-Boswellic Acid (AKBA)-Loaded O-Carboxymethyl Chitosan Nanoparticles Through Antioxidant and Anti-Inflammatory Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acetyl-11-keto-β-boswellic acid (AKBA), a main active constituent from Boswellia serrata resin, is a novel candidate for therapy of cerebral ischemia-reperfusion (I/R) injury. Nevertheless, its poor solubility in aqueous solvent, bioavailability, and rapid clearance limit its curative efficacy. To enhance its potency, in our study, AKBA-loaded o-carboxymethyl chitosan nanoparticle (AKBA-NP) delivery system was synthesized. The transmission electron microscopy and transmission electron microscope images of AKBA-NPs suggested that particle size was 132 ± 18 nm, and particles were spherical in shape with smooth morphology. In pharmacokinetics study, AKBA-NPs apparently increases the area under the curve of plasma concentration-time and prolonged half-life compared with AKBA. The tissue distribution study confirmed that AKBA-NPs had a better brain delivery efficacy in comparison with AKBA. The results from our pharmacodynamic studies showed that AKBA-NPs possess better neuroprotection compared with AKBA in primary neurons with oxygen-glucose deprivation (OGD) model and in animals with middle cerebral artery occlusion (MCAO) model. Additionally, AKBA-NPs modulate antioxidant and anti-inflammatory pathways more effectively than AKBA by increasing nuclear erythroid 2-related factor 2 and heme oxygenase-1 expression, and by decreasing nuclear factor-kappa B and 5-lipoxygenase expression. Collectively, our results suggest that AKBA-NPs serve as a potent delivery vehicle for AKBA in cerebral ischemic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AKBA:

Acetyl-11-keto-β-boswellic acid

AKBA-NPs:

AKBA-loaded o-carboxymethyl chitosan nanoparticles

EPR:

Enhanced permeability and retention

GPx:

Glutathione peroxidase

IL-1β:

Interleukin-1β

I/R:

Ischemia-reperfusion

HO-1:

Heme oxygenase-1

5-LOX:

5-Lipoxygenase

MCAO:

Middle cerebral artery occlusion

MDA:

Malondialdehyde

MTT:

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

Nrf2:

Nuclear factor erythroid-2-related factor 2

NF-κB:

Nuclear factor kappa-beta

O-CMC:

O-Carboxymethyl chitosan

OGD:

Oxygen and glucose deprivation

SD:

Standard deviation

SEM:

Scanning electron microscope

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-α

TTC:

2,3,5-Triphenyltetrazolium chloride

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick-end labeling

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  2. Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14(11):1363–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marder VJ, Jahan R, Gruber T, Goyal A, Arora V (2010) Thrombolysis with plasmin: implications for stroke treatment. Stroke J Cereb Circ 41(10 Suppl):S45–S49. doi:10.1161/STROKEAHA.110.595157

    Article  CAS  Google Scholar 

  4. Ernst E (2008) Frankincense: systematic review. BMJ 337:a2813. doi:10.1136/bmj.a2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ammon HP (2006) Boswellic acids in chronic inflammatory diseases. Planta Med 72(12):1100–1116. doi:10.1055/s-2006-947227

    Article  CAS  PubMed  Google Scholar 

  6. Moussaieff A, Mechoulam R (2009) Boswellia resin: from religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. J Pharm Pharmacol 61(10):1281–1293. doi:10.1211/jpp/61.10.0003

    Article  CAS  PubMed  Google Scholar 

  7. Kirste S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K, Hug MJ, Lubrich B et al (2011) Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer 117(16):3788–3795. doi:10.1002/cncr.25945

    Article  PubMed  Google Scholar 

  8. Skarke C, Kuczka K, Tausch L, Werz O, Rossmanith T, Barrett JS, Harder S, Holtmeier W et al (2012) Increased bioavailability of 11-keto-beta-boswellic acid following single oral dose frankincense extract administration after a standardized meal in healthy male volunteers: modeling and simulation considerations for evaluating drug exposures. J Clin Pharmacol 52(10):1592–1600. doi:10.1177/0091270011422811

    Article  CAS  PubMed  Google Scholar 

  9. Ding Y, Chen M, Wang M, Wang M, Zhang T, Park J, Zhu Y, Guo C et al (2014) Neuroprotection by acetyl-11-keto-beta-boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep 4:7002. doi:10.1038/srep07002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sailer ER, Subramanian LR, Rall B, Hoernlein RF, Ammon H, Safayhi H (1996) Acetyl‐11‐keto‐β‐boswellic acid (AKBA): structure requirements for binding and 5-lipoxygenase inhibitory activity. Br J Pharmacol 117(4):615–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuaz-Pérolin C, Billiet L, Baugé E, Copin C, Scott-Algara D, Genze F, Büchele B, Syrovets T et al (2008) Antiinflammatory and antiatherogenic effects of the NF-κB inhibitor acetyl-11-keto-β-boswellic acid in LPS-challenged ApoE−/− mice. Arterioscler Thromb Vasc Biol 28(2):272–277

    Article  PubMed  Google Scholar 

  12. Karlina M, Pozharitskaya O, Kosman V, Ivanova S (2007) Bioavailability of boswellic acids: in vitro/in vivo correlation. Pharm Chem J 41(11):569–572

    Article  CAS  Google Scholar 

  13. Kruger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, Muller WE, Karas M et al (2008) Metabolism of boswellic acids in vitro and in vivo. Drug Metab Dispos Biol Fate Chem 36(6):1135–1142. doi:10.1124/dmd.107.018424

    Article  PubMed  Google Scholar 

  14. Cho Y, Shi R, Borgens RB (2010) Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury. J Exp Biol 213(9):1513–1520

    Article  CAS  PubMed  Google Scholar 

  15. Lee HJ, Park J, Yoon OJ, Kim HW, Kim DH, Lee WB, Lee N-E, Bonventre JV et al (2011) Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol 6(2):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Giglio E, Trapani A, Cafagna D, Sabbatini L, Cometa S (2011) Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization. Anal Bioanal Chem 400(7):1997–2002. doi:10.1007/s00216-011-4962-y

    Article  PubMed  Google Scholar 

  17. Xie YT, Du YZ, Yuan H, Hu FQ (2012) Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomedicine 7:3235–3244. doi:10.2147/Ijn.S32701

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Malatesta M, Galimberti V, Cisterna B, Costanzo M, Biggiogera M, Zancanaro C (2014) Chitosan nanoparticles are efficient carriers for delivering biodegradable drugs to neuronal cells. Histochem Cell Biol 141(5):551–558. doi:10.1007/s00418-013-1175-9

    Article  CAS  PubMed  Google Scholar 

  19. Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharmaceut 379(1):146–157. doi:10.1016/j.ijpharm.2009.06.019

    Article  CAS  Google Scholar 

  20. Zhao L, Zhu B, Jia Y, Hou W, Su C (2013) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. BioMed Res Int 2013:236469. doi:10.1155/2013/236469

    PubMed  PubMed Central  Google Scholar 

  21. Smitha KT, Sreelakshmi M, Nisha N, Jayakumar R, Biswas R (2014) Amidase encapsulated O-carboxymethyl chitosan nanoparticles for vaccine delivery. Int J Biol Macromol 63:154–157. doi:10.1016/j.ijbiomac.2013.10.045

    Article  CAS  PubMed  Google Scholar 

  22. Nagpal K, Singh SK, Mishra DN (2013) Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem Pharm Bull 61(3):258–272

    Article  CAS  PubMed  Google Scholar 

  23. Reising K, Meins J, Bastian B, Eckert G, Mueller WE, Schubert-Zsilavecz M, Abdel-Tawab M (2005) Determination of boswellic acids in brain and plasma by high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 77(20):6640–6645. doi:10.1021/ac0506478

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Li Q, Wang X, Yu S, Li L, Wu X, Chen Y, Zhao J et al (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8(3):e59843. doi:10.1371/journal.pone.0059843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng B, Gou X, Chen H, Li L, Zhong H, Xu H, Jiang F, Zhao Z et al (2013) Targeted delivery of neurogenin-2 protein in the treatment for cerebral ischemia-reperfusion injury. Biomaterials 34(34):8786–8797. doi:10.1016/j.biomaterials.2013.07.076

    Article  CAS  PubMed  Google Scholar 

  26. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke J Cereb Circ 20(1):84–91

    Article  CAS  Google Scholar 

  27. Lu Y-M, Huang J-Y, Wang H, Lou X-F, Liao M-H, Hong L-J, Tao R-R, Ahmed MM et al (2014) Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 35(1):530–537

    Article  CAS  PubMed  Google Scholar 

  28. Rubin L, Staddon J (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22(1):11–28

    Article  CAS  PubMed  Google Scholar 

  29. Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci 93(24):14164–14169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stolnik S, Illum L, Davis S (2012) Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 64:290–301

    Article  Google Scholar 

  31. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87(1):179–197. doi:10.1016/j.pbb.2007.04.015

    Article  CAS  PubMed  Google Scholar 

  32. Chan PH (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol 4(1):59–65

    Article  CAS  PubMed  Google Scholar 

  33. Siesjo BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1(3):165–211

    CAS  PubMed  Google Scholar 

  34. Ding Y, Chen M, Wang M, Li Y, Wen A (2014) Posttreatment with 11-keto-β-boswellic acid ameliorates cerebral ischemia–reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol Neurobiol 1–10. doi:10.1007/s12035-014-8929-9

  35. Ding Y, Zhang B, Zhou K, Chen M, Wang M, Jia Y, Song Y, Li Y et al (2014) Dietary ellagic acid improves oxidant-induced endothelial dysfunction and atherosclerosis: role of Nrf2 activation. Int J Cardiol 175(3):508–514. doi:10.1016/j.ijcard.2014.06.045

    Article  PubMed  Google Scholar 

  36. Maines MD (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J Off Publ Fed Am Soc Exp Biol 2(10):2557–2568

    CAS  Google Scholar 

  37. Loetscher H, Gentz R, Zulauf M, Lustig A, Tabuchi H, Schlaeger EJ, Brockhaus M, Gallati H et al (1991) Recombinant 55-kDa tumor necrosis factor (TNF) receptor. Stoichiometry of binding to TNF alpha and TNF beta and inhibition of TNF activity. J Biol Chem 266(27):18324–18329

    CAS  PubMed  Google Scholar 

  38. Touzani O, Boutin H, Chuquet J, Rothwell N (1999) Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 100(1):203–215

    Article  CAS  PubMed  Google Scholar 

  39. Killeen MJ, Linder M, Pontoniere P, Crea R (2014) NF-kappabeta signaling and chronic inflammatory diseases: exploring the potential of natural products to drive new therapeutic opportunities. Drug Discov Today 19(4):373–378. doi:10.1016/j.drudis.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  40. Siemoneit U, Hofmann B, Kather N, Lamkemeyer T, Madlung J, Franke L, Schneider G, Jauch J et al (2008) Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochem Pharmacol 75(2):503–513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Key Technologies for New Drug Innovation and Development of China (Nos. 2011ZXJ09202-13 and 2012BAK25B00) and the National Natural Science Foundation of China (Nos. 81373947 and 81201985).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuwen Li or Aidong Wen.

Additional information

Yi Ding and Youbei Qiao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Qiao, Y., Wang, M. et al. Enhanced Neuroprotection of Acetyl-11-Keto-β-Boswellic Acid (AKBA)-Loaded O-Carboxymethyl Chitosan Nanoparticles Through Antioxidant and Anti-Inflammatory Pathways. Mol Neurobiol 53, 3842–3853 (2016). https://doi.org/10.1007/s12035-015-9333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9333-9

Keywords

Navigation