Skip to main content
Log in

Interleukin-17A Acts to Maintain Neuropathic Pain Through Activation of CaMKII/CREB Signaling in Spinal Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Immunity and neuroinflammation play major roles in neuropathic pain. Spinal interleukin (IL)-17A, as a mediator connecting innate and adaptive immunity, has been shown to be an important cytokine in neuroinflammation and acute neuropathic pain. However, the effects and underlying mechanisms of spinal IL-17A in the maintenance of neuropathic pain remain unknown. This study was designed to investigate whether spinal IL-17A acted to maintain neuropathic pain and to elucidate the underlying mechanisms in IL-17A knockout or wild-type (WT) mice following L4 spinal nerve ligation (L4 SNL). WT mice were treated with anti-IL­17A neutralized monoclonal antibody (mAb) or recombinant IL-17A (rIL-17A). We showed that IL-17A levels were significantly increased 1, 3, 7, and 14 days after SNL in spinal cord. Double immunofluorescence staining showed that astrocytes were the major cellular source of spinal IL-17A. IL-17A knockout or anti-IL-17A mAb treatment significantly ameliorated hyperalgesia 7 days after SNL, which was associated with a significant reduction of p-CaMKII and p-CREB levels in spinal cord, whereas rIL-17A treatment conferred the opposite effects. Furthermore, we showed that blocking CaMKII with KN93 significantly reduced SNL- or rIL-17A-induced hyperalgesia and p-CREB expression. Our in vitro data showed that KN93 also significantly inhibited rIL-17A-induced CREB activation in primary cultured spinal neurons. Taken together, our study indicates that astrocytic IL-17A plays important roles in the maintenance of neuropathic pain through CaMKII/CREB signaling pathway in spinal cord, and thus targeting IL-17A may offer an attractive strategy for the treatment of chronic persistent neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819

    Article  PubMed  Google Scholar 

  2. Toth C, Lander J, Wiebe S (2009) The prevalence and impact of chronic pain with neuropathic pain symptoms in the general population. Pain Med 10:918–929

    Article  PubMed  Google Scholar 

  3. Verma V, Sheikh Z, Ahmed AS (2014) Nociception and role of immune system in pain. Acta Neurol Belg

  4. Zhang X, Wu Z, Hayashi Y, Okada R, Nakanishi H (2014) Peripheral role of cathepsin S in Th1 cell-dependent transition of nerve injury-induced acute pain to a chronic pain state. J Neurosci 34:3013–3022

    Article  CAS  PubMed  Google Scholar 

  5. Cao L, DeLeo JA (2008) CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol 38:448–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Draleau K, Maddula S, Slaiby A, Nutile-McMenemy N, De Leo J, Cao L (2014) Phenotypic identification of spinal cord-infiltrating CD4 T lymphocytes in a murine model of neuropathic pain. J Pain Relief 3:3

    Google Scholar 

  7. Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64:477–485

    Article  CAS  PubMed  Google Scholar 

  8. Kolls JK, Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21:467–476

    Article  CAS  PubMed  Google Scholar 

  9. Costigan M, Moss A, Latremoliere A, Johnston C, Verma-Gandhu M, Herbert TA, Barrett L, Brenner GJ, Vardeh D, Woolf CJ, Fitzgerald M (2009) T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J Neurosci 29:14415–14422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McNamee KE, Alzabin S, Hughes JP, Anand P, Feldmann M, Williams RO, Inglis JJ (2011) IL-17 induces hyperalgesia via TNF-dependent neutrophil infiltration. Pain 152:1838–1845

    Article  CAS  PubMed  Google Scholar 

  11. Kim CF, Moalem-Taylor G (2011) Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain 12:370–383

    Article  CAS  PubMed  Google Scholar 

  12. Pinto LG, Cunha TM, Vieira SM, Lemos HP, Verri WJ, Cunha FQ, Ferreira SH (2010) IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain 148:247–256

    Article  CAS  PubMed  Google Scholar 

  13. Meng X, Zhang Y, Lao L, Saito R, Li A, Backman CM, Berman BM, Ren K, Wei PK, Zhang RX (2013) Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 154:294–305

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakanishi M, Hata K, Nagayama T, Sakurai T, Nishisho T, Wakabayashi H, Hiraga T, Ebisu S, Yoneda T (2010) Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain. Mol Biol Cell 21:2568–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Cheng X, Xu J, Liu Z, Wan Y, Ma D (2011) Anti-hyperalgesic effect of CaMKII inhibitor is associated with downregulation of phosphorylated CREB in rat spinal cord. J Anesth 25:87–92

    Article  PubMed  Google Scholar 

  17. Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR (2004) Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24:8310–8321

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Yang C, Wang ZJ (2010) Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia. J Neurosci 30:38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katano T, Nakazawa T, Nakatsuka T, Watanabe M, Yamamoto T, Ito S (2011) Involvement of spinal phosphorylation cascade of Tyr1472-NR2B, Thr286-CaMKII, and Ser831-GluR1 in neuropathic pain. Neuropharmacology 60:609–616

    Article  CAS  PubMed  Google Scholar 

  20. Luo F, Yang C, Chen Y, Shukla P, Tang L, Wang LX, Wang ZJ (2008) Reversal of chronic inflammatory pain by acute inhibition of Ca2+/calmodulin-dependent protein kinase II. J Pharmacol Exp Ther 325:267–275

    Article  CAS  PubMed  Google Scholar 

  21. Fang L, Wu J, Lin Q, Willis WD (2002) Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci 22:4196–4204

    CAS  PubMed  Google Scholar 

  22. Zhou C, Luo ZD (2014) Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein. Eur J Pain 18:649–658

    Article  CAS  PubMed  Google Scholar 

  23. Rigaud M, Gemes G, Barabas ME, Chernoff DI, Abram SE, Stucky CL, Hogan QH (2008) Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136:188–201

    Article  PubMed  PubMed Central  Google Scholar 

  24. Austin TM, Delpire E (2011) Inhibition of KCC2 in mouse spinal cord neurons leads to hypersensitivity to thermal stimulation. Anesth Analg 113:1509–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52

    Article  CAS  PubMed  Google Scholar 

  26. Watkins LR, Maier SF (2005) Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med 257:139–155

    Article  CAS  PubMed  Google Scholar 

  27. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368

    Article  CAS  PubMed  Google Scholar 

  28. Ren K, Dubner R (2008) Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol 21:570–579

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thacker MA, Clark AK, Marchand F, McMahon SB (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105:838–847

    Article  PubMed  Google Scholar 

  30. Miller RJ, Jung H, Bhangoo SK, White FA (2009) Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 417–449

  31. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  CAS  PubMed  Google Scholar 

  32. Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705

    Article  CAS  PubMed  Google Scholar 

  34. Hoeger-Bement MK, Sluka KA (2003) Phosphorylation of CREB and mechanical hyperalgesia is reversed by blockade of the cAMP pathway in a time-dependent manner after repeated intramuscular acid injections. J Neurosci 23:5437–5445

    CAS  PubMed  Google Scholar 

  35. Mitsikostas DD, Knight YE, Lasalandra M, Kavantzas N, Goadsby PJ (2011) Triptans attenuate capsaicin-induced CREB phosphorylation within the trigeminal nucleus caudalis: a mechanism to prevent central sensitization? J Headache Pain 12:411–417

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Ma W, Chabot JG, Quirion R (2010) Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFkappaB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia. Pain 151:194–205

    Article  CAS  PubMed  Google Scholar 

  37. Wang LN, Yao M, Yang JP, Peng J, Peng Y, Li CF, Zhang YB, Ji FH, Cheng H, Xu QN, Wang XY, Zuo JL (2011) Cancer-induced bone pain sequentially activates the ERK/MAPK pathway in different cell types in the rat spinal cord. Mol Pain 7:48

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma W, Hatzis C, Eisenach JC (2003) Intrathecal injection of cAMP response element binding protein (CREB) antisense oligonucleotide attenuates tactile allodynia caused by partial sciatic nerve ligation. Brain Res 988:97–104

    Article  CAS  PubMed  Google Scholar 

  39. Miletic G, Pankratz MT, Miletic V (2002) Increases in the phosphorylation of cyclic AMP response element binding protein (CREB) and decreases in the content of calcineurin accompany thermal hyperalgesia following chronic constriction injury in rats. Pain 99:493–500

    Article  CAS  PubMed  Google Scholar 

  40. Josiah DT, Vincler MA (2006) Impact of chronic nicotine on the development and maintenance of neuropathic hypersensitivity in the rat. Psychopharmacology (Berl) 188:152–161

    Article  CAS  Google Scholar 

  41. Descalzi G, Fukushima H, Suzuki A, Kida S, Zhuo M (2012) Genetic enhancement of neuropathic and inflammatory pain by forebrain upregulation of CREB-mediated transcription. Mol Pain 8:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Prof. Xiang Cheng from the Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology for assistance with knockout mice-related lab work.

Conflict of Interest

The authors declare that they have no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lin.

Additional information

Cheng-ye Yao, Ze-lin Weng and Jian-cheng Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Cy., Weng, Zl., Zhang, Jc. et al. Interleukin-17A Acts to Maintain Neuropathic Pain Through Activation of CaMKII/CREB Signaling in Spinal Neurons. Mol Neurobiol 53, 3914–3926 (2016). https://doi.org/10.1007/s12035-015-9322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9322-z

Keywords

Navigation