Skip to main content

Advertisement

Log in

Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by cognitive decline that afflicts as many as 45 % of individuals who survive past the age of 85. AD has been associated with neurovascular dysfunction and brain accumulation of amyloid-β peptide, as well as tau phosphorylation and neurodegeneration, but the pathogenesis of the disease is still somewhat unclear. According to the amyloid cascade hypothesis of AD, accumulation of amyloid-β peptide (Aβ) aggregates initiates a sequence of events leading to neuronal injury and loss, and dementia. Alternatively, the vascular hypothesis of AD incorporates the vascular contribution to the disease, stating that a primary insult to brain microcirculation (e.g., stroke) not only contributes to amyloidopathy but initiates a non-amyloidogenic pathway of vascular-mediated neuronal dysfunction and injury, which involves blood–brain barrier compromise, with increased permeability of blood vessels, leakage of blood-borne components into the brain, and, consequently, neurotoxicity. Vascular dysfunction also includes a diminished brain capillary flow, causing multiple focal ischemic or hypoxic microinjuries, diminished amyloid-β clearance, and formation of neurotoxic oligomers, which lead to neuronal dysfunction. Here we present and discuss relevant findings on the contribution of vascular alterations during aging to AD, with the hope that a better understanding of the players in the “orchestra” of neurodegeneration will be useful in developing therapies to modulate the “symphony”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alzheimer's Association Report (2013) 2013 Alzheimer's disease facts and figures. Alzheimer's Dement 9(2):208–245. doi:10.1016/j.jalz.2013.02.003

  2. Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA (2001) Is the risk of developing Alzheimer's disease greater for women than for men? Am J Epidemiol 153(2):132–136

    Article  CAS  PubMed  Google Scholar 

  3. Protsenko E, DeGiorgis J (2014) The amyloid precursor protein of Alzheimer’s disease localizes to a domain adjacent to synaptic vesicles of the presynaptic terminal (596.9). FASEB J 28(1) (Supplement)

  4. Statistics NCfH (2013) Deaths: final data for 2013, vol 64. National Vital Statistics Report, Hyattsville

  5. Hunter S, Arendt T, Brayne C (2013) The senescence hypothesis of disease progression in Alzheimer disease: an integrated matrix of disease pathways for FAD and SAD. Mol Neurobiol 48(3):556–570. doi:10.1007/s12035-013-8445-3

    Article  CAS  PubMed  Google Scholar 

  6. McDonald RJ, Craig LA, Hong NS (2010) The etiology of age-related dementia is more complicated than we think. Behav Brain Res 214(1):3–11. doi:10.1016/j.bbr.2010.05.005

    Article  PubMed  Google Scholar 

  7. Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer's disease. Front Biosci 5:167–177

    Article  Google Scholar 

  8. Rohn TT (2013) Proteolytic cleavage of apolipoprotein E4 as the keystone for the heightened risk associated with Alzheimer's disease. Int J Mol Sci 14(7):14908–14922. doi:10.3390/ijms140714908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12):1452–1458. doi:10.1038/ng.2802ng.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar V, Abbas AK, Fausto N, Mitchell R (2012) Robbins basic pathology, 9th edn. Elsevier Health Sciences

  11. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspect Med 1(1):a006189. doi:10.1101/cshperspect.a006189

    Article  CAS  Google Scholar 

  12. Sagare AP, Bell RD, Zlokovic BV (2012) Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring Harbor Perspect Med 2(10). doi:10.1101/cshperspect.a011452

  13. Zlokovic BV (2008) The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57(2):178–201. doi:10.1016/j.neuron.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Kalaria RN (2010) Vascular basis for brain degeneration: faltering controls and risk factors for dementia. Nutr Rev 68(Suppl 2):S74–S87. doi:10.1111/j.1753-4887.2010.00352.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37(1):56–74. doi:10.1111/j.1365-2990.2010.01139.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64(2):328–363. doi:10.1016/j.brainresrev.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  17. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112. doi:10.3389/fncel.2014.00112

    PubMed  PubMed Central  Google Scholar 

  18. Janota CS, Brites D, Lemere CA, Brito MA (2015) Glio-vascular changes during ageing in wild-type and in Alzheimers disease-like APP/PS1 mice. Brain Res. doi:10.1016/j.brainres.2015.04.056

    PubMed  PubMed Central  Google Scholar 

  19. Peters O, Schipke CG, Philipps A et al (2009) Astrocyte function is modified by Alzheimer's disease-like pathology in aged mice. J Alzheimers Dis 18(1):177–189. doi:10.3233/JAD-2009-1140

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez-Vieitez E, Ni R, Gulyas B et al (2015) Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Imaging 42(7):1119–1132. doi:10.1007/s00259-015-3047-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao J, O'Connor T, Vassar R (2011) The contribution of activated astrocytes to Abeta production: implications for Alzheimer's disease pathogenesis. J Neuroinflammation 8:150. doi:10.1186/1742-2094-8-150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas I, Wegner A, Mair F et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat Med 18(12):1812–1819. doi:10.1038/nm.2965

    Article  CAS  PubMed  Google Scholar 

  23. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. doi:10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  24. Prinz M, Priller J, Sisodia SS, Ransohoff RM (2011) Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 14(10):1227–1235. doi:10.1038/nn.2923

    Article  CAS  PubMed  Google Scholar 

  25. Parker DC, Mielke MM, Yu Q, Rosenberg PB, Jain A, Lyketsos CG, Fedarko NS, Oh ES (2013) Plasma neopterin level as a marker of peripheral immune activation in amnestic mild cognitive impairment and Alzheimer's disease. Int J Geriatr Psychiatry 28(2):149–154. doi:10.1002/gps.3802

    Article  PubMed  Google Scholar 

  26. Pellicano M, Bulati M, Buffa S, Barbagallo M, Di Prima A, Misiano G, Picone P, Di Carlo M et al (2010) Systemic immune responses in Alzheimer's disease: in vitro mononuclear cell activation and cytokine production. J Alzheimers Dis 21(1):181–192. doi:10.3233/JAD-2010-091714

    Article  CAS  PubMed  Google Scholar 

  27. Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, Rubino G, Iemolo F et al (2012) Immune profiling of Alzheimer patients. J Neuroimmunol 242(1-2):52–59. doi:10.1016/j.jneuroim.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  28. Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, Jansen M, Vitek MP et al (2015) Arginine deprivation and immune suppression in a mouse model of Alzheimer's disease. J Neurosci 35(15):5969–5982. doi:10.1523/JNEUROSCI.4668-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L (2014) CD33 in Alzheimer's disease. Mol Neurobiol 49(1):529–535. doi:10.1007/s12035-013-8536-1

    Article  CAS  PubMed  Google Scholar 

  30. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41(10):1094–1099. doi:10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  31. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368(2):117–127. doi:10.1056/NEJMoa1211851

    Article  CAS  PubMed  Google Scholar 

  32. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  33. Cummings JL (2004) Alzheimer's disease. N Engl J Med 351(1):56–67. doi:10.1056/NEJMra040223

    Article  CAS  PubMed  Google Scholar 

  34. Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci 28(4):202–208. doi:10.1016/j.tins.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  35. de la Torre JC (2010) The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond. Neurodegener Dis 7(1-3):116–121. doi:10.1159/000285520

    Article  PubMed  Google Scholar 

  36. Marchesi VT (2011) Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J 25(1):5–13. doi:10.1096/fj.11-0102ufm

    Article  CAS  PubMed  Google Scholar 

  37. de la Torre JC (2010) Vascular risk factor detection and control may prevent Alzheimer's disease. Ageing Res Res Rev 9(3):218–225. doi:10.1016/j.arr.2010.04.002

    Article  CAS  Google Scholar 

  38. Deane R, Wu Z, Sagare A et al (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43(3):333–344. doi:10.1016/j.neuron.2004.07.017

    Article  CAS  PubMed  Google Scholar 

  39. Deane R, Wu Z, Zlokovic BV (2004) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke 35(11 Suppl 1):2628–2631. doi:10.1161/01.STR.0000143452.85382.d1

    Article  CAS  PubMed  Google Scholar 

  40. Eisele YS, Obermuller U, Heilbronner G et al (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330(6006):980–982. doi:10.1126/science.1194516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar-Singh S, Pirici D, McGowan E et al (2005) Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol 167(2):527–543. doi:10.1016/S0002-9440(10)62995-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer's disease. Brain Pathol 18(2):253–266. doi:10.1111/j.1750-3639.2008.00133.x

    Article  CAS  PubMed  Google Scholar 

  43. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA (2003) Blood–brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10(6):463–470. doi:10.1038/sj.mn.7800212

    CAS  PubMed  Google Scholar 

  44. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer's disease. Acta Neuropathol 118(1):103–113. doi:10.1007/s00401-009-0522-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takuma K, Fang F, Zhang W et al (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A 106(47):20021–20026. doi:10.1073/pnas.0905686106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jellinger KA (2010) Prevalence and impact of cerebrovascular lesions in Alzheimer and lewy body diseases. Neurodegener Dis 7(1-3):112–115. doi:10.1159/000285518

    Article  CAS  PubMed  Google Scholar 

  47. Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7(6):476–484. doi:10.1016/j.cmet.2008.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K (2008) Central obesity and increased risk of dementia more than three decades later. Neurology 71(14):1057–1064. doi:10.1212/01.wnl.0000306313.89165.ef

    Article  CAS  PubMed  Google Scholar 

  49. Kovacic JC, Castellano JM, Fuster V (2012) The links between complex coronary disease, cerebrovascular disease, and degenerative brain disease. Ann NY Acad Sci 1254:99–105. doi:10.1111/j.1749-6632.2012.06482.x

    Article  PubMed  Google Scholar 

  50. Snyder HM, Corriveau RA, Craft S et al (2015) Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement 11(6):710–717. doi:10.1016/j.jalz.2014.10.008

    Article  PubMed  Google Scholar 

  51. Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW (2004) Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 1009(1-2):1–8. doi:10.1016/j.brainres.2003.09.086

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, Yan JC, Zhou HD et al (2011) Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology 76(17):1485–1491. doi:10.1212/WNL.0b013e318217e7a4

    Article  CAS  PubMed  Google Scholar 

  53. Tolppanen AM, Lavikainen P, Solomon A, Kivipelto M, Soininen H, Hartikainen S (2013) Incidence of stroke in people with Alzheimer disease: a national register-based approach. Neurology 80(4):353–358. doi:10.1212/WNL.0b013e31827f08c5

    Article  PubMed  Google Scholar 

  54. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12(12):723–738. doi:10.1038/nrn3114

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45(2):327–347. doi:10.1007/s12035-012-8244-2

    Article  PubMed  CAS  Google Scholar 

  56. Erickson MA, Banks WA (2013) Blood–brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab 33(10):1500–1513. doi:10.1038/jcbfm.2013.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tai LM, Holloway KA, Male DK, Loughlin AJ, Romero IA (2010) Amyloid-beta-induced occludin down-regulation and increased permeability in human brain endothelial cells is mediated by MAPK activation. J Cell Mol Med 14(5):1101–1112. doi:10.1111/j.1582-4934.2009.00717.x

    CAS  PubMed  Google Scholar 

  58. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH (2009) Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72(18):1614–1616. doi:10.1212/WNL.0b013e3181a41228

    Article  CAS  PubMed  Google Scholar 

  59. Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8(2):205–216. doi:10.1016/S1474-4422(09)70016-X

    Article  CAS  PubMed  Google Scholar 

  60. Bell RD, Winkler EA, Sagare AP et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427. doi:10.1016/j.neuron.2010.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562–566. doi:10.1038/nature09513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Armulik A, Genove G, Mae M et al (2010) Pericytes regulate the blood–brain barrier. Nature 468(7323):557–561. doi:10.1038/nature09522

    Article  CAS  PubMed  Google Scholar 

  63. Broadwell RD, Salcman M (1981) Expanding the definition of the blood–brain barrier to protein. Proc Natl Acad Sci USA 78(12):7820–7824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sagare AP, Bell RD, Zhao Z et al (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932. doi:10.1038/ncomms3932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV (2013) Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer's disease. Brain Pathol 23(3):303–310. doi:10.1111/bpa.12004

    Article  PubMed  Google Scholar 

  66. Verbeek MM, de Waal RM, Schipper JJ, Van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid beta protein. J Neurochem 68(3):1135–1141

    Article  CAS  PubMed  Google Scholar 

  67. Wisniewski HM, Wegiel J, Wang KC, Lach B (1992) Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer's disease. Acta Neuropathol 84(2):117–127

    Article  CAS  PubMed  Google Scholar 

  68. Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T, Yao VJ, Inai T et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116(10):2610–2621. doi:10.1172/JCI24612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim Y, Kim E, Wu Q et al (2012) Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes Dev 26(11):1247–1262. doi:10.1101/gad.193565.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson NA, Jahng GH, Weiner MW et al (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234(3):851–859. doi:10.1148/radiol.2343040197

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schuff N, Matsumoto S, Kmiecik J et al (2009) Cerebral blood flow in ischemic vascular dementia and Alzheimer's disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement 5(6):454–462. doi:10.1016/j.jalz.2009.04.1233

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roher AE, Debbins JP, Malek-Ahmadi M et al (2012) Cerebral blood flow in Alzheimer's disease. Vasc Health Risk Manag 8:599–611. doi:10.2147/VHRM.S34874

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gao YZ, Zhang JJ, Liu H, Wu GY, Xiong L, Shu M (2013) Regional cerebral blood flow and cerebrovascular reactivity in Alzheimer's disease and vascular dementia assessed by arterial spinlabeling magnetic resonance imaging. Curr Neurovasc Res 10(1):49–53

    Article  PubMed  Google Scholar 

  74. Do TM, Alata W, Dodacki A et al (2014) Altered cerebral vascular volumes and solute transport at the blood–brain barriers of two transgenic mouse models of Alzheimer's disease. Neuropharmacology 81:311–317. doi:10.1016/j.neuropharm.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  75. Hu WT, Wang Z, Lee VM, Trojanowski JQ, Detre JA, Grossman M (2010) Distinct cerebral perfusion patterns in FTLD and AD. Neurology 75(10):881–888. doi:10.1212/WNL.0b013e3181f11e35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koike MAGF, Kitazawa M, Green KN, Laferla FM (2010) Long term changes in phospho-APP and tau aggregation in the 3xTg-AD mice following cerebral ischemia. Neurosci Lett 495(1):55–59. doi:10.1016/j.neulet.2011.03.034

    Article  CAS  Google Scholar 

  77. Biron KE, Dickstein DL, Gopaul R, Jefferies WA (2011) Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer's disease. PLoS One 6(8), e23789. doi:10.1371/journal.pone.0023789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biron KE, Dickstein DL, Gopaul R, Fenninger F, Jefferies WA (2013) Cessation of neoangiogenesis in Alzheimer's disease follows amyloid-beta immunization. Sci Rep 3:1354. doi:10.1038/srep01354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Johnson KA, Lopera F, Jones K et al (2001) Presenilin-1-associated abnormalities in regional cerebral perfusion. Neurology 56(11):1545–1551

    Article  CAS  PubMed  Google Scholar 

  80. Thambisetty M, Beason-Held L, An Y, Kraut MA, Resnick SM (2010) APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch Neurol 67(1):93–98. doi:10.1001/archneurol.2009.913

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wu Z, Guo H, Chow N et al (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11(9):959–965. doi:10.1038/nm1287

    CAS  PubMed  Google Scholar 

  82. Li L, Zhang X, Yang D, Luo G, Chen S, Le W (2009) Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol Aging 30(7):1091–1098. doi:10.1016/j.neurobiolaging.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Li L, Zhang X et al (2013) Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer's disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 34(3):663–678. doi:10.1016/j.neurobiolaging.2012.06.012

    Article  PubMed  CAS  Google Scholar 

  84. Chow N, Bell RD, Deane R et al (2007) Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc Natl Acad Sci U S A 104(3):823–828. doi:10.1073/pnas.0608251104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bell RD, Deane R, Chow N et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11(2):143–153. doi:10.1038/ncb1819

    Article  CAS  PubMed  Google Scholar 

  86. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD (1998) Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res Mol Brain Res 62(1):101–105

    Article  CAS  PubMed  Google Scholar 

  87. Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB (2004) Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer's disease. Neurobiol Aging 25(3):283–290. doi:10.1016/S0197-4580(03)00111-8

    Article  PubMed  CAS  Google Scholar 

  88. Religa P, Cao R, Religa D et al (2013) VEGF significantly restores impaired memory behavior in Alzheimer's mice by improvement of vascular survival. Sci Rep 3:2053. doi:10.1038/srep02053

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim YN, Kim do H (2012) Decreased serum angiogenin level in Alzheimer's disease. Prog Nuropsychopharmacol Biol Psychiatry 38(2):116–120. doi:10.1016/j.pnpbp.2012.02.010

    Article  CAS  Google Scholar 

  90. da Lee Y, Park KW, Jin BK (2006) Thrombin induces neurodegeneration and microglial activation in the cortex in vivo and in vitro: proteolytic and non-proteolytic actions. Biochem Biophys Res Commun 346(3):727–738. doi:10.1016/j.bbrc.2006.05.174

    Article  CAS  PubMed  Google Scholar 

  91. Yin X, Wright J, Wall T, Grammas P (2010) Brain endothelial cells synthesize neurotoxic thrombin in Alzheimer's disease. Am J Pathol 176(4):1600–1606. doi:10.2353/ajpath.2010.090406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW (2003) Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 278(39):37681–37689. doi:10.1074/jbc.M301406200

    Article  CAS  PubMed  Google Scholar 

  93. Ciallella JR, Figueiredo H, Smith-Swintosky V, McGillis JP (1999) Thrombin induces surface and intracellular secretion of amyloid precursor protein from human endothelial cells. Thromb Haemost 81(4):630–637

    CAS  PubMed  Google Scholar 

  94. Clifford PM, Zarrabi S, Siu G et al (2007) Abeta peptides can enter the brain through a defective blood–brain barrier and bind selectively to neurons. Brain Res 1142:223–236. doi:10.1016/j.brainres.2007.01.070

    Article  CAS  PubMed  Google Scholar 

  95. Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid beta-peptide from brain: transport or metabolism? Nat Med 6(7):718. doi:10.1038/77397

    Article  Google Scholar 

  96. Deane R, Singh I, Sagare AP et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122(4):1377–1392. doi:10.1172/JCI58642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marzolo MP, Farfan P (2011) New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 44(1):89–105. doi:10.4067/S0716-97602011000100012

    Article  CAS  PubMed  Google Scholar 

  98. Galasko D, Bell J, Mancuso JY et al (2014) Clinical trial of an inhibitor of RAGE-Abeta interactions in Alzheimer disease. Neurology 82(17):1536–1542. doi:10.1212/WNL.0000000000000364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zlokovic BV (2008) New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics 5(3):409–414. doi:10.1016/j.nurt.2008.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park IH, Yeon SI, Youn JH et al (2004) Expression of a novel secreted splice variant of the receptor for advanced glycation end products (RAGE) in human brain astrocytes and peripheral blood mononuclear cells. Mol Immunol 40(16):1203–1211

    Article  CAS  PubMed  Google Scholar 

  101. Jeynes B, Provias J (2008) Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Curr Alzheimer Res 5(5):432–437

    Article  CAS  PubMed  Google Scholar 

  102. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci 65(9):963–975. doi:10.1093/gerona/glq074

    Article  CAS  Google Scholar 

  103. Yan SD, Chen X, Fu J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382(6593):685–691. doi:10.1038/382685a0

    Article  CAS  PubMed  Google Scholar 

  104. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83(11):876–886. doi:10.1007/s00109-005-0688-7

    Article  CAS  PubMed  Google Scholar 

  105. Bierhaus A, Nawroth PP (2009) Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52(11):2251–2263. doi:10.1007/s00125-009-1458-9

    Article  CAS  PubMed  Google Scholar 

  106. Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I (2012) Abeta(1)(-)(4)(2)-RAGE interaction disrupts tight junctions of the blood–brain barrier via Ca(2)(+)-calcineurin signaling. J Neurosci 32(26):8845–8854. doi:10.1523/JNEUROSCI.6102-11.2012

    Article  CAS  PubMed  Google Scholar 

  107. Shibata M, Yamada S, Kumar SR et al (2000) Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. J Clin Invest 106(12):1489–1499. doi:10.1172/JCI10498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sagare A, Deane R, Bell RD et al (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13(9):1029–1031. doi:10.1038/nm1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Johanson C, Flaherty S, Messier A, Duncan J III, Silverberg G (2006) Expression of the beta-amyloid transporter, LRP1, in aging choroid plexus: Implications for the CSF–brain systemin NPH and Alzheimer’s disease. Cerebrospinal Fluid Res 3(Suppl 1):S29. doi:10.1186/1743-8454-3-S1-S29

    Article  PubMed Central  Google Scholar 

  110. Behl M, Zhang Y, Monnot AD, Jiang W, Zheng W (2009) Increased beta-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1. Toxicol Appl Pharmacol 240(2):245–254. doi:10.1016/j.taap.2009.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Behl M, Zhang Y, Shi Y, Cheng J, Du Y, Zheng W (2010) Lead-induced accumulation of beta-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C. Neurotoxicology 31(5):524–532. doi:10.1016/j.neuro.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-beta. J Neurosci 32(46):16458–16465. doi:10.1523/JNEUROSCI.3987-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Waldron E, Heilig C, Schweitzer A et al (2008) LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol Dis 31(2):188–197. doi:10.1016/j.nbd.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  114. Zurhove K, Nakajima C, Herz J, Bock HH, May P (2008) Gamma-secretase limits the inflammatory response through the processing of LRP1. Sci Signal 1(47):ra15. doi:10.1126/scisignal.1164263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Bading JR, Yamada S, Mackic JB et al (2002) Brain clearance of Alzheimer's amyloid-beta40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. J Drug Target 10(4):359–368. doi:10.1080/10611860290031831

    Article  CAS  PubMed  Google Scholar 

  116. Deane R, Du Yan S, Submamaryan RK et al (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9(7):907–913. doi:10.1038/nm890

    Article  CAS  PubMed  Google Scholar 

  117. Donahue JE, Flaherty SL, Johanson CE et al (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 112(4):405–415. doi:10.1007/s00401-006-0115-3

    Article  CAS  PubMed  Google Scholar 

  118. Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ (2013) C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-beta neurotoxicity. J Biol Chem 288(1):654–665. doi:10.1074/jbc.M112.400168

    Article  CAS  PubMed  Google Scholar 

  119. Yoon C, Van Niekerk EA, Henry K et al (2013) Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration. J Biol Chem 288(37):26557–26568. doi:10.1074/jbc.M113.478552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sagare AP, Bell RD, Srivastava A et al (2013) A lipoprotein receptor cluster IV mutant preferentially binds amyloid-beta and regulates its clearance from the mouse brain. J Biol Chem 288(21):15154–15166. doi:10.1074/jbc.M112.439570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Provias J, Jeynes B (2014) The role of the blood–brain barrier in the pathogenesis of senile plaques in Alzheimer's disease. Int J Alzheimers Dis 2014:191863. doi:10.1155/2014/191863

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Deo AK, Borson S, Link JM et al (2014) Activity of P-glycoprotein, a beta-amyloid transporter at the blood–brain barrier, is compromised in patients with mild Alzheimer Disease. J Nucl Med 55(7):1106–1111. doi:10.2967/jnumed.113.130161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abuznait AH, Kaddoumi A (2012) Role of ABC transporters in the pathogenesis of Alzheimer's disease. ACS Chem Neurosci 3(11):820–831. doi:10.1021/cn300077c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Assema DM, Lubberink M, Boellaard R et al (2012) P-glycoprotein function at the blood–brain barrier: effects of age and gender. Mol Imaging Biol 14(6):771–776. doi:10.1007/s11307-012-0556-0

    Article  PubMed  PubMed Central  Google Scholar 

  125. van Assema DM, Lubberink M, Rizzu P et al (2012) Blood–brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients: effect of polymorphisms in the ABCB1 gene. EJNMMI Res 2(1):57. doi:10.1186/2191-219X-2-57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Fjell AM, Westlye LT, Grydeland H et al (2013) Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging 34(10):2239–2247. doi:10.1016/j.neurobiolaging.2013.04.006

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69(24):2197–2204. doi:10.1212/01.wnl.0000271090.28148.24

    Article  PubMed  Google Scholar 

  128. Salat DH, Buckner RL, Snyder AZ et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730. doi:10.1093/cercor/bhh032

    Article  PubMed  Google Scholar 

  129. Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song AW (2012) Diffusion tensor imaging of cerebral white matter integrity in cognitive aging. Biochim Biophys Acta 1822(3):386–400. doi:10.1016/j.bbadis.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  130. Zhang R, Kadar T, Sirimanne E, MacGibbon A, Guan J (2012) Age-related memory decline is associated with vascular and microglial degeneration in aged rats. Behav Brain Res 235(2):210–217. doi:10.1016/j.bbr.2012.08.002

    Article  PubMed  Google Scholar 

  131. Kalaria RN (1996) Cerebral vessels in ageing and Alzheimer's disease. Pharmacol Ther 72(3):193–214

    Article  CAS  PubMed  Google Scholar 

  132. Farrall AJ, Wardlaw JM (2009) Blood–brain barrier: ageing and microvascular disease--systematic review and meta-analysis. Neurobiol Aging 30(3):337–352. doi:10.1016/j.neurobiolaging.2007.07.015

    Article  CAS  PubMed  Google Scholar 

  133. Zhang X, Li G, Guo L et al (2013) Age-related alteration in cerebral blood flow and energy failure is correlated with cognitive impairment in the senescence-accelerated prone mouse strain 8 (SAMP8). Neurol Sci 34(11):1917–1924. doi:10.1007/s10072-013-1407-8

    Article  PubMed  Google Scholar 

  134. Silverberg GD, Messier AA, Miller MC et al (2010) Amyloid efflux transporter expression at the blood–brain barrier declines in normal aging. J Neuropathol Exp Neurol 69(10):1034–1043. doi:10.1097/NEN.0b013e3181f46e25

    Article  CAS  PubMed  Google Scholar 

  135. Silverberg GD, Miller MC, Messier AA et al (2010) Amyloid deposition and influx transporter expression at the blood–brain barrier increase in normal aging. J Neuropathol Exp Neurol 69(1):98–108. doi:10.1097/NEN.0b013e3181c8ad2f

    Article  CAS  PubMed  Google Scholar 

  136. Denieffe S, Kelly RJ, McDonald C, Lyons A, Lynch MA (2013) Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav Immun 34:86–97. doi:10.1016/j.bbi.2013.07.174

    Article  CAS  PubMed  Google Scholar 

  137. Wilhelm I, Fazakas C, Tamas A, Toth G, Reglodi D, Krizbai IA (2014) PACAP enhances barrier properties of cerebral microvessels. J Mol Neurosci 54(3):469–476. doi:10.1007/s12031-014-0260-4

    Article  CAS  PubMed  Google Scholar 

  138. Farkas E, de Vos RA, Donka G, Jansen Steur EN, Mihaly A, Luiten PG (2006) Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol 111(2):150–157. doi:10.1007/s00401-005-0007-y

    Article  PubMed  Google Scholar 

  139. Alba C, Vidal L, Diaz F, Villena A, de Vargas IP (2004) Ultrastructural and quantitative age-related changes in capillaries of the dorsal lateral geniculate nucleus. Brain Res Bull 64(2):145–153. doi:10.1016/j.brainresbull.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  140. Kalaria RN, Pax AB (1995) Increased collagen content of cerebral microvessels in Alzheimer's disease. Brain Res 705(1-2):349–352

    Article  CAS  PubMed  Google Scholar 

  141. Peters A, Sethares C (2012) Age-related changes in the morphology of cerebral capillaries do not correlate with cognitive decline. J Comp Neurol 520(6):1339–1347. doi:10.1002/cne.22809

    Article  PubMed  Google Scholar 

  142. Stoquart-ElSankari S, Baledent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME (2007) Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 27(9):1563–1572. doi:10.1038/sj.jcbfm.9600462

    Article  PubMed  Google Scholar 

  143. Cordonnier C, van der Flier WM (2011) Brain microbleeds and Alzheimer's disease: innocent observation or key player? Brain 134(Pt 2):335–344. doi:10.1093/brain/awq321

    Article  PubMed  Google Scholar 

  144. Thore CR, Anstrom JA, Moody DM, Challa VR, Marion MC, Brown WR (2007) Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 66(5):337–345. doi:10.1097/nen.0b013e3180537147

    Article  PubMed  Google Scholar 

  145. Jucker M, Battig K, Meier-Ruge W (1990) Effects of aging and vincamine derivatives on pericapillary microenvironment: stereological characterization of the cerebral capillary network. Neurobiol Aging 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  146. Wu H, Wang H, Sha J, Li Y, Zhang R, Bu N (2009) Expression of hypoxia inducible factor-1alpha and erythropoietin in the hippocampus of aging rats. J Cent South Univ Med Sci 34(9):856–860

    CAS  Google Scholar 

  147. Harb R, Whiteus C, Freitas C, Grutzendler J (2013) In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab 33(1):146–156. doi:10.1038/jcbfm.2012.152

    Article  CAS  PubMed  Google Scholar 

  148. Gordon-Krajcer W, Kozniewska E, Lazarewicz JW, Ksiezak-Reding H (2007) Differential changes in phosphorylation of tau at PHF-1 and 12E8 epitopes during brain ischemia and reperfusion in gerbils. Neurochem Res 32(4-5):729–737. doi:10.1007/s11064-006-9199-3

    Article  CAS  PubMed  Google Scholar 

  149. Wang Y, Garg S, Mandelkow EM, Mandelkow E (2010) Proteolytic processing of tau. Biochem Soc Trans 38(4):955–961. doi:10.1042/BST0380955

    Article  CAS  PubMed  Google Scholar 

  150. Katsimpardi L, Litterman NK, Schein PA et al (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634. doi:10.1126/science.1251141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ojo B, Rezaie P, Gabbott PL et al (2012) Age-related changes in the hippocampus (loss of synaptophysin and glial–synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain Behav Immun 26(5):778–788. doi:10.1016/j.bbi.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  152. Topiwala A, Ebmeier KP (2012) Vascular changes and brain plasticity: a new approach to neurodegenerative diseases. Am J Neurodegener Dis 1(2):152–159

    PubMed  PubMed Central  Google Scholar 

  153. Hof PR, Morrison JH (2004) The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 27(10):607–613. doi:10.1016/j.tins.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  154. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250. doi:10.1038/nrn3200

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Andersen BB, Gundersen HJ, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3):356–365. doi:10.1002/cne.10884

    Article  PubMed  Google Scholar 

  156. Woodruff-Pak DS, Foy MR, Akopian GG et al (2010) Differential effects and rates of normal aging in cerebellum and hippocampus. Proc Natl Acad Sci U S A 107(4):1624–1629. doi:10.1073/pnas.0914207107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sauvant J, Delpech JC, Palin K et al (2014) Mechanisms involved in dual vasopressin/apelin neuron dysfunction during aging. PLoS ONE 9(2), e87421. doi:10.1371/journal.pone.0087421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. LeBlanc AC, Ramcharitar J, Afonso V et al (2014) Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment. Cell Death Diff 21(5):696–706. doi:10.1038/cdd.2013.194

    Article  CAS  Google Scholar 

  159. Tsakiri EN, Sykiotis GP, Papassideri IS et al (2013) Proteasome dysfunction in Drosophila signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell 12(5):802–813. doi:10.1111/acel.12111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vegh MJ, Rausell A, Loos M et al (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteomics 13(11):2975–2985. doi:10.1074/mcp.M113.032086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Quiroz-Baez R, Flores-Dominguez D, Arias C (2013) Synaptic aging is associated with mitochondrial dysfunction, reduced antioxidant contents and increased vulnerability to amyloid-beta toxicity. Curr Alzheimer Res 10(3):324–331

    Article  CAS  PubMed  Google Scholar 

  162. Hof PR, Duan H, Page TL et al (2002) Age-related changes in GluR2 and NMDAR1 glutamate receptor subunit protein immunoreactivity in corticocortically projecting neurons in macaque and patas monkeys. Brain Res 928(1-2):175–186

    Article  CAS  PubMed  Google Scholar 

  163. Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13(9):950–961. doi:10.1093/cercor/13.9.950

    Article  PubMed  Google Scholar 

  164. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402. doi:10.1001/archneur.58.9.1395

    Article  CAS  PubMed  Google Scholar 

  165. Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508. doi:10.1212/01.wnl.0000260698.46517.8f

    Article  CAS  PubMed  Google Scholar 

  166. Head E (2011) Neurobiology of the aging dog. Age 33(3):485–496. doi:10.1007/s11357-010-9183-3

    Article  CAS  PubMed  Google Scholar 

  167. Mutsuga M, Chambers JK, Uchida K et al (2012) Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer's brain. J Vet Med Sci 74(1):51–57. doi:10.1292/jvms.11-0307

    Article  CAS  PubMed  Google Scholar 

  168. Finch CE, Austad SN (2012) Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging. Age 34(5):1075–1091. doi:10.1007/s11357-011-9355-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7(11):1181–1183. doi:10.1038/nn1335

    Article  CAS  PubMed  Google Scholar 

  170. Spires TL, Meyer-Luehmann M, Stern EA et al (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25(31):7278–7287. doi:10.1523/JNEUROSCI.1879-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Spires-Jones TL, Meyer-Luehmann M, Osetek JD et al (2007) Impaired spine stability underlies plaque-related spine loss in an Alzheimer's disease mouse model. Am J Pathol 171(4):1304–1311. doi:10.2353/ajpath.2007.070055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. doi:10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  174. Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain—bad news for neurons? Front Biosci 13:3423–3438. doi:10.2741/2937

    Article  CAS  PubMed  Google Scholar 

  175. Dickson DW, Crystal HA, Mattiace LA et al (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13(1):179–189

    Article  CAS  PubMed  Google Scholar 

  176. Sheffield LG, Berman NE (1998) Microglial expression of MHC class II increases in normal aging of nonhuman primates. Neurobiol Aging 19(1):47–55

    Article  CAS  PubMed  Google Scholar 

  177. Peters A, Josephson K, Vincent SL (1991) Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerebral cortex. Anat Rec 229(3):384–398. doi:10.1002/ar.1092290311

    Article  CAS  PubMed  Google Scholar 

  178. Ye SM, Johnson RW (2001) An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 9(4):183–192. doi:10.1159/000049025

    Article  CAS  PubMed  Google Scholar 

  179. Raj DD, Jaarsma D, Holtman IR et al (2014) Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol Aging 35(9):2147–2160. doi:10.1016/j.neurobiolaging.2014.03.025

    Article  CAS  PubMed  Google Scholar 

  180. Fang F, Lue LF, Yan S et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J 24(4):1043–1055. doi:10.1096/fj.09-139634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Origlia N, Criscuolo C, Arancio O, Yan SS, Domenici L (2014) RAGE inhibition in microglia prevents ischemia-dependent synaptic dysfunction in an amyloid-enriched environment. J Neurosci 34(26):8749–8760. doi:10.1523/JNEUROSCI.0141-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Lee DC, Ruiz CR, Lebson L et al (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34(6):1610–1620. doi:10.1016/j.neurobiolaging.2012.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M (2014) Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13(1):60–69. doi:10.1111/acel.12149

    Article  CAS  PubMed  Google Scholar 

  184. Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ (2007) Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 10(1):61–74. doi:10.1089/rej.2006.9096

    Article  CAS  PubMed  Google Scholar 

  185. Sawada H, Hishida R, Hirata Y et al (2007) Activated microglia affect the nigro-striatal dopamine neurons differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci Res 85(8):1752–1761. doi:10.1002/jnr.21241

    Article  CAS  PubMed  Google Scholar 

  186. Flanary B (2005) The role of microglial cellular senescence in the aging and Alzheimer diseased brain. Rejuvenation Res 8(2):82–85. doi:10.1089/rej.2005.8.82

    Article  CAS  PubMed  Google Scholar 

  187. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. doi:10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Suzumura A (2009) Neurotoxicity by microglia: the mechanisms and potential therapeutic strategy. Fukuoka Igaku Zasshi 100(7):243–247

    CAS  PubMed  Google Scholar 

  189. Godbout JP, Johnson RW (2009) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin N Am 29(2):321–337. doi:10.1016/j.iac.2009.02.007

    Article  Google Scholar 

  190. Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202(1-2):13–23. doi:10.1016/S0022-510X(02)00207-1

    Article  CAS  PubMed  Google Scholar 

  191. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur J Neurosci 34(1):3–11. doi:10.1111/j.1460-9568.2011.07738.x

    Article  PubMed  Google Scholar 

  192. Carrero I, Gonzalo MR, Martin B, Sanz-Anquela JM, Arevalo-Serrano J, Gonzalo-Ruiz A (2012) Oligomers of beta-amyloid protein (Abeta1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Exp Neurol 236(2):215–227. doi:10.1016/j.expneurol.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  193. Zhao W, Zhang J, Davis EG, Rebeck GW (2014) Aging reduces glial uptake and promotes extracellular accumulation of Abeta from a lentiviral vector. Front Aging Neurosci 6:210. doi:10.3389/fnagi.2014.00210

    PubMed  PubMed Central  Google Scholar 

  194. Garwood C, Faizullabhoy A, Wharton SB et al (2013) Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol 39(7):788–799. doi:10.1111/nan.12033

    Article  CAS  PubMed  Google Scholar 

  195. Arimoto JM, Wong A, Rozovsky I, Lin SW, Morgan TE, Finch CE (2013) Age increase of estrogen receptor-alpha (ERalpha) in cortical astrocytes impairs neurotrophic support in male and female rats. Endocrinology 154(6):2101–2113. doi:10.1210/en.2012-2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Xie F, Zhang JC, Fu H, Chen J (2013) Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 32(5):1021–1028. doi:10.3892/ijmm.2013.1486

    CAS  PubMed  Google Scholar 

  197. Miranda CJ, Braun L, Jiang Y et al (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11(3):542–552. doi:10.1111/j.1474-9726.2012.00816.x

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ashton RS, Conway A, Pangarkar C et al (2012) Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling. Nat Neurosci 15(10):1399–1406. doi:10.1038/nn.3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Bien-Ly N, Gillespie AK, Walker D, Yoon SY, Huang Y (2012) Reducing human apolipoprotein E levels attenuates age-dependent Abeta accumulation in mutant human amyloid precursor protein transgenic mice. J Neurosci 32(14):4803–4811. doi:10.1523/JNEUROSCI.0033-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação para a Ciência e a Tecnologia (FCT - PEst-OE/SAU/UI4013/2011-2013) (MAB) and by philanthropic funds (CAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alexandra Brito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janota, C., Lemere, C.A. & Brito, M.A. Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer’s Disease. Mol Neurobiol 53, 3793–3811 (2016). https://doi.org/10.1007/s12035-015-9319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9319-7

Keywords

Navigation