Molecular Neurobiology

, Volume 53, Issue 6, pp 3756–3770 | Cite as

Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons

  • Qinyong Ye
  • Wanling Huang
  • Dongzhu Li
  • Erwang Si
  • Juhua Wang
  • Yingqing Wang
  • Chun Chen
  • Xiaochun Chen


Parkinson’s disease (PD) is a common neurodegenerative disease in the elderly. Mitochondrial dysfunction plays an important role in the pathogenesis of PD. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a powerful transcription factor, interacting with multiple transcription factors and widely involving in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. The present study investigated the neuroprotective effects and signal transduction mechanisms of the overexpression of PGC-1α on N-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial damage in SH-SY5Y cell, establishing the cell model of overexpression of PGC-1α and the cell model of PD by using adenoviral vectors and MPP+. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) assay was used to investigate the effects of MPP+ and adenovirus on the cell viability of SH-SY5Y cells and the cell viability of experimental groups. Western blot and real-time PCR analysis were used to detect the expression of PGC-1α. Flow cytometry and ELISA were used to detect mitochondrial membrane potential and the level of cytochrome C, respectively. The level of intracellular ATP and H2O2 was measured by multifunctional fluorescence microplate. Western blot analysis and real-time PCR were used to observe the expression of estrogen-related receptor α (ERRα), peroxisome proliferator-activated receptor γ (PPARγ), nuclear respiratory factor (NRF)-1, and NRF-2. Confocal fluorescence analysis was used to observe subcellular localization of PGC-1α in SH-SY5Y cells under the intervention of MPP+. The expression of PGC-1α messenger RNA and protein significantly increased in Adv-PGC-1α + GFP groups, compared with the control and Adv-GFP groups (P < 0.01). The overexpression of PGC-1α could increase mitochondrial membrane potential, reduce the release of mitochondrial cytochrome C, inhibit H2O2 production, and improve the level of ATP in SH-SY5Y cells. The trend of expression of ERRα, PPARγ, and NRF-1 was more consistent with PGC-1α, the most remarkable change is ERRα, but the expression of NRF-2 has no significant changes. Under the gradually increasing concentration of MPP+, microscale PGC-1α gradually appeared in the cytoplasm of SH-SY5Y cells. The overexpression of PGC-1α can inhibit MPP+-induced mitochondrial damage in SH-SY5Y cells, and PGC-1α may realize the neuroprotective effects via the ERRα, PPARγ, and NRF-1 pathway.


Parkinson’s disease PGC-1α Adenovirus vector SH-SY5Y cells Nuclear transcription factors 



Peroxisome proliferator-activated receptor-γ coactivator-1α


N-methyl-4-phenylpyridinium ion


Nuclear respiratory factor 1/2


Estrogen-related receptor α


Peroxisome proliferator-activated receptor γ

Cyt C

Cytochrome C


Mitochondrial transcription factor A


  1. 1.
    D’Ame lio M, Ragonese P, Sconzo G et al (2009) Parkinson’s disease and cancer: insights for pathogenesis from epidemiology. Ann N Y Acad Sci 1155:324–334CrossRefGoogle Scholar
  2. 2.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840CrossRefPubMedGoogle Scholar
  3. 3.
    Ying P, Hyo Geun K, Myung Sook O et al (2012) Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP+-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta 1820(5):577–585CrossRefGoogle Scholar
  4. 4.
    Nicole E, Anne Kathrin L, Christian H et al (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062CrossRefGoogle Scholar
  5. 5.
    Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: implications for neurological care. Nat Clin Pract Neurol 2(3):136–146CrossRefPubMedGoogle Scholar
  6. 6.
    Tsunemi T, La Spada AR (2012) PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol 97(2):142–151CrossRefPubMedGoogle Scholar
  7. 7.
    Hu MT, Taylor-Robinson SD, Chaudhuri KR et al (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18) FDG-PET study. Brain 123(Pt2):340–352CrossRefPubMedGoogle Scholar
  8. 8.
    Esterbauer H, Oberkofler H, Krempler F et al (1999) Human peroxisome proliferator activated receptor gamma coactivator1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62(1):98–102CrossRefPubMedGoogle Scholar
  9. 9.
    Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Feige JN, Auwerx J (2008) Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 20(3):303–309CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tritos NA, Mastaitis JW, Kokkotou EG, Puigserver P, Spiegelman BM, Maratos-Flier E (2003) Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. Brain Res 961(2):255–260CrossRefPubMedGoogle Scholar
  12. 12.
    Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379–21385CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mudo` G, Makela J, Di Liberto V et al (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69(7):1153–1165CrossRefPubMedGoogle Scholar
  14. 14.
    Shamina MR, Li XY, Loren L et al (2007) Estrogen-related receptor a is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun 357:231–236CrossRefGoogle Scholar
  15. 15.
    Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283(6):3120–3129CrossRefPubMedGoogle Scholar
  16. 16.
    Scarpulla RC (2012) Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim Biophys Acta 1819(9–10):1088–1097CrossRefPubMedGoogle Scholar
  17. 17.
    Schreiber SN, Emter R, Hock MB et al (2004) The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101(17):6472–6477CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aaron PR, Shogo W, Lodovica V et al (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117CrossRefGoogle Scholar
  19. 19.
    Francesc XS, Marc L, Daniel B et al (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-r-coactivator-1α, estrogen-related receptor-α, and mitofusin 2. Diabetes 55:1783–1791CrossRefGoogle Scholar
  20. 20.
    Bastin J, Aubey F, Rötig A et al (2008) Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 93(4):1433–1441CrossRefPubMedGoogle Scholar
  21. 21.
    Wenz T, Diaz F, Spiegelman BM et al (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 8(3):249–256CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ellis HP, Kurian KM (2014) Biological rationale for the use of PPARγ agonists in glioblastoma. Front Oncol 4:52CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zolezzi JM, Silva-Alvarez C, Ordenes D (2013) Peroxisome proliferator-activated receptor (PPAR) γ and PPARα agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8(5), e64019CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    De Nuccio C, Bernardo A, De Simone R et al (2011) Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J Neuropathol Exp Neurol 70(10):900–912CrossRefPubMedGoogle Scholar
  25. 25.
    Moreno M, Lombardi A, Silvestri E et al (2010) PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res. doi:10.1155/2010/435689
  26. 26.
    Ye Q, Huang B, Zhang X et al (2012) Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neurosci 13:156CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Joo-Ho S, Han Seok K, Hochul K et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702CrossRefGoogle Scholar
  28. 28.
    Clark J, Silvaggi JM, Kiselak T et al (2012) PGC-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One 7(11), e48925CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408CrossRefPubMedGoogle Scholar
  30. 30.
    Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23(9):459–466CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Crispo JA, Piché M, Ansell DR et al (2010) Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun 393:773–778CrossRefPubMedGoogle Scholar
  32. 32.
    Jia H, Liu Z, Li X et al (2010) Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model. Neurobiol Aging 31(4):636–646CrossRefPubMedGoogle Scholar
  33. 33.
    Lin TK, Cheng CH, Chen SD et al (2012) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13(7):8722–8739CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Perier C, Bové J, Vila M (2012) Mitochondria and programmed cell death in Parkinson’s disease: apoptosis and beyond. Antioxid Redox Signal 16(9):883–895CrossRefPubMedGoogle Scholar
  35. 35.
    Berger AK, Cortese GP, Amodeo KD et al (2009) Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 18(22):4317–4328CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cowell RM, Talati P, Blake KR et al (2009) Identification of novel targets for PGC-1alpha and histone deacetylase inhibitors in neuroblastoma cells. Biochem Biophys Res Commun 379(2):578–582CrossRefPubMedGoogle Scholar
  37. 37.
    Ebadi M, Govitrapong P, Sharma S et al (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 10(3–4):224–253CrossRefPubMedGoogle Scholar
  38. 38.
    Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1 M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2 ) and PGC-1 family coactivators. Mol Cell Biol 25(4):1354–1366CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Litonin D, Sologub M, Shi Y et al (2010) Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 285(24):18129–18133CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Knutti D, Kaul A, Kralli A (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20(7):2411–2422CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu XY, Peng LJ, Lv M et al (2012) Recent advance in the design of small molecular modulators of estrogen-related receptors. Curr Pharm Des 18(23):3421–3431CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson RM, Barger JL, Edwards MG et al (2008) Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7(1):101–111CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu JH, Gusdon AM, Cimen H et al (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3, e312CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Aquilano K, Vigilanza P, Baldelli S et al (2010) Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria. J Biol Chem 285(28):21590–21599CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Felder TK, Soyal SM, Oberkofler H et al (2011) Characterization of novel peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) isoform in human liver. J Biol Chem 286(50):42923–42936CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ji Suk C, Peter H, Yubin Z et al (2010) Regulation of NT-PGC-1α subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1. J Biol Chem 285(23):18039–18050CrossRefGoogle Scholar
  47. 47.
    Soyal SM, Felder TK, Auer S (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21(15):3461–3473CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qinyong Ye
    • 1
  • Wanling Huang
    • 1
  • Dongzhu Li
    • 1
  • Erwang Si
    • 1
  • Juhua Wang
    • 1
  • Yingqing Wang
    • 1
  • Chun Chen
    • 1
  • Xiaochun Chen
    • 1
  1. 1.Department of Neurology, Fujian Institute of GeriatricsThe Affiliated Union Hospital of Fujian Medical UniversityFuzhouChina

Personalised recommendations