Skip to main content

Advertisement

Log in

Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease in the elderly. Mitochondrial dysfunction plays an important role in the pathogenesis of PD. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a powerful transcription factor, interacting with multiple transcription factors and widely involving in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. The present study investigated the neuroprotective effects and signal transduction mechanisms of the overexpression of PGC-1α on N-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial damage in SH-SY5Y cell, establishing the cell model of overexpression of PGC-1α and the cell model of PD by using adenoviral vectors and MPP+. 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide thiazolyl blue (MTT) assay was used to investigate the effects of MPP+ and adenovirus on the cell viability of SH-SY5Y cells and the cell viability of experimental groups. Western blot and real-time PCR analysis were used to detect the expression of PGC-1α. Flow cytometry and ELISA were used to detect mitochondrial membrane potential and the level of cytochrome C, respectively. The level of intracellular ATP and H2O2 was measured by multifunctional fluorescence microplate. Western blot analysis and real-time PCR were used to observe the expression of estrogen-related receptor α (ERRα), peroxisome proliferator-activated receptor γ (PPARγ), nuclear respiratory factor (NRF)-1, and NRF-2. Confocal fluorescence analysis was used to observe subcellular localization of PGC-1α in SH-SY5Y cells under the intervention of MPP+. The expression of PGC-1α messenger RNA and protein significantly increased in Adv-PGC-1α + GFP groups, compared with the control and Adv-GFP groups (P < 0.01). The overexpression of PGC-1α could increase mitochondrial membrane potential, reduce the release of mitochondrial cytochrome C, inhibit H2O2 production, and improve the level of ATP in SH-SY5Y cells. The trend of expression of ERRα, PPARγ, and NRF-1 was more consistent with PGC-1α, the most remarkable change is ERRα, but the expression of NRF-2 has no significant changes. Under the gradually increasing concentration of MPP+, microscale PGC-1α gradually appeared in the cytoplasm of SH-SY5Y cells. The overexpression of PGC-1α can inhibit MPP+-induced mitochondrial damage in SH-SY5Y cells, and PGC-1α may realize the neuroprotective effects via the ERRα, PPARγ, and NRF-1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

MPP+ :

N-methyl-4-phenylpyridinium ion

NRF-1/2:

Nuclear respiratory factor 1/2

ERRα:

Estrogen-related receptor α

PPARγ:

Peroxisome proliferator-activated receptor γ

Cyt C:

Cytochrome C

TFAM:

Mitochondrial transcription factor A

References

  1. D’Ame lio M, Ragonese P, Sconzo G et al (2009) Parkinson’s disease and cancer: insights for pathogenesis from epidemiology. Ann N Y Acad Sci 1155:324–334

    Article  Google Scholar 

  2. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  3. Ying P, Hyo Geun K, Myung Sook O et al (2012) Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP+-induced mitochondrial dysfunctions in neuronal cells. Biochim Biophys Acta 1820(5):577–585

    Article  Google Scholar 

  4. Nicole E, Anne Kathrin L, Christian H et al (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  Google Scholar 

  5. Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: implications for neurological care. Nat Clin Pract Neurol 2(3):136–146

    Article  CAS  PubMed  Google Scholar 

  6. Tsunemi T, La Spada AR (2012) PGC-1α at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol 97(2):142–151

    Article  CAS  PubMed  Google Scholar 

  7. Hu MT, Taylor-Robinson SD, Chaudhuri KR et al (2000) Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18) FDG-PET study. Brain 123(Pt2):340–352

    Article  PubMed  Google Scholar 

  8. Esterbauer H, Oberkofler H, Krempler F et al (1999) Human peroxisome proliferator activated receptor gamma coactivator1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression. Genomics 62(1):98–102

    Article  CAS  PubMed  Google Scholar 

  9. Perier C, Vila M (2012) Mitochondrial biology and Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009332

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feige JN, Auwerx J (2008) Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr Opin Cell Biol 20(3):303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tritos NA, Mastaitis JW, Kokkotou EG, Puigserver P, Spiegelman BM, Maratos-Flier E (2003) Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain. Brain Res 961(2):255–260

    Article  CAS  PubMed  Google Scholar 

  12. Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379–21385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mudo` G, Makela J, Di Liberto V et al (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci 69(7):1153–1165

    Article  CAS  PubMed  Google Scholar 

  14. Shamina MR, Li XY, Loren L et al (2007) Estrogen-related receptor a is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun 357:231–236

    Article  Google Scholar 

  15. Dhar SS, Ongwijitwat S, Wong-Riley MT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283(6):3120–3129

    Article  CAS  PubMed  Google Scholar 

  16. Scarpulla RC (2012) Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim Biophys Acta 1819(9–10):1088–1097

    Article  CAS  PubMed  Google Scholar 

  17. Schreiber SN, Emter R, Hock MB et al (2004) The estrogen-related receptor α (ERRα) functions in PPARγ coactivator 1α (PGC-1α)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A 101(17):6472–6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aaron PR, Shogo W, Lodovica V et al (2013) Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 49:107–117

    Article  Google Scholar 

  19. Francesc XS, Marc L, Daniel B et al (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-r-coactivator-1α, estrogen-related receptor-α, and mitofusin 2. Diabetes 55:1783–1791

    Article  Google Scholar 

  20. Bastin J, Aubey F, Rötig A et al (2008) Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 93(4):1433–1441

    Article  CAS  PubMed  Google Scholar 

  21. Wenz T, Diaz F, Spiegelman BM et al (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 8(3):249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellis HP, Kurian KM (2014) Biological rationale for the use of PPARγ agonists in glioblastoma. Front Oncol 4:52

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zolezzi JM, Silva-Alvarez C, Ordenes D (2013) Peroxisome proliferator-activated receptor (PPAR) γ and PPARα agonists modulate mitochondrial fusion-fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8(5), e64019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Nuccio C, Bernardo A, De Simone R et al (2011) Peroxisome proliferator-activated receptor γ agonists accelerate oligodendrocyte maturation and influence mitochondrial functions and oscillatory Ca(2+) waves. J Neuropathol Exp Neurol 70(10):900–912

    Article  PubMed  Google Scholar 

  25. Moreno M, Lombardi A, Silvestri E et al (2010) PPARs: nuclear receptors controlled by, and controlling, nutrient handling through nuclear and cytosolic signaling. PPAR Res. doi:10.1155/2010/435689

  26. Ye Q, Huang B, Zhang X et al (2012) Astaxanthin protects against MPP(+)-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neurosci 13:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joo-Ho S, Han Seok K, Hochul K et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144(5):689–702

    Article  Google Scholar 

  28. Clark J, Silvaggi JM, Kiselak T et al (2012) PGC-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One 7(11), e48925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. St-Pierre J, Drori S, Uldry M et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408

    Article  CAS  PubMed  Google Scholar 

  30. Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23(9):459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crispo JA, Piché M, Ansell DR et al (2010) Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun 393:773–778

    Article  CAS  PubMed  Google Scholar 

  32. Jia H, Liu Z, Li X et al (2010) Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model. Neurobiol Aging 31(4):636–646

    Article  CAS  PubMed  Google Scholar 

  33. Lin TK, Cheng CH, Chen SD et al (2012) Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci 13(7):8722–8739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perier C, Bové J, Vila M (2012) Mitochondria and programmed cell death in Parkinson’s disease: apoptosis and beyond. Antioxid Redox Signal 16(9):883–895

    Article  CAS  PubMed  Google Scholar 

  35. Berger AK, Cortese GP, Amodeo KD et al (2009) Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 18(22):4317–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cowell RM, Talati P, Blake KR et al (2009) Identification of novel targets for PGC-1alpha and histone deacetylase inhibitors in neuroblastoma cells. Biochem Biophys Res Commun 379(2):578–582

    Article  CAS  PubMed  Google Scholar 

  37. Ebadi M, Govitrapong P, Sharma S et al (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 10(3–4):224–253

    Article  CAS  PubMed  Google Scholar 

  38. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1 M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2 ) and PGC-1 family coactivators. Mol Cell Biol 25(4):1354–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Litonin D, Sologub M, Shi Y et al (2010) Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 285(24):18129–18133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knutti D, Kaul A, Kralli A (2000) A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol 20(7):2411–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu XY, Peng LJ, Lv M et al (2012) Recent advance in the design of small molecular modulators of estrogen-related receptors. Curr Pharm Des 18(23):3421–3431

    Article  CAS  PubMed  Google Scholar 

  42. Anderson RM, Barger JL, Edwards MG et al (2008) Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7(1):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu JH, Gusdon AM, Cimen H et al (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3, e312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aquilano K, Vigilanza P, Baldelli S et al (2010) Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria. J Biol Chem 285(28):21590–21599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Felder TK, Soyal SM, Oberkofler H et al (2011) Characterization of novel peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) isoform in human liver. J Biol Chem 286(50):42923–42936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji Suk C, Peter H, Yubin Z et al (2010) Regulation of NT-PGC-1α subcellular localization and function by protein kinase A-dependent modulation of nuclear export by CRM1. J Biol Chem 285(23):18039–18050

    Article  Google Scholar 

  47. Soyal SM, Felder TK, Auer S (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21(15):3461–3473

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fund of China (General Program) “PGC-1α Signal transduction mechanism for the regulation of mitochondrial function Parkinson’s disease model” (No. 81271414).

Conflict of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Qinyong Ye conceived and supervised the study; Dongzhu Li, Wanling Huang, Yingqing Wang, and Chun Chen participated in the flow cytometry assay, ELISA, immunohistochemistry, Western blot analysis, real-time-PCR and helped to draft the manuscript; Erwang Si and Juhua Wang also helped to draft the manuscript; and Xiaochun Chen also conceived the study. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinyong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Huang, W., Li, D. et al. Overexpression of PGC-1α Influences Mitochondrial Signal Transduction of Dopaminergic Neurons. Mol Neurobiol 53, 3756–3770 (2016). https://doi.org/10.1007/s12035-015-9299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9299-7

Keywords

Navigation