Molecular Neurobiology

, Volume 53, Issue 5, pp 3477–3493 | Cite as

Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability

  • Sachiko MuraseEmail author
  • Crystal L. Lantz
  • Eunyoung Kim
  • Nitin Gupta
  • Richard Higgins
  • Mark Stopfer
  • Dax A. Hoffman
  • Elizabeth M. Quinlan


In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9−/− mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9−/− mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.


Extracellular matrix Cell death Dendritic morphology Spontaneous activity Kainate-induced seizure 



This work was supported by the Intramural Research Program of the NIH, NICHD and NINDS, and R01EY016431 to EMQ.

Compliance with Ethical Standards

The authors declare no potential conflicts of interest to disclose. All research involving animals conformed to the guidelines of the US Department of Health and Human Services and the University of Maryland and NIH Institutional Animal Care and Use Committees. This manuscript was submitted with the consent of all the authors.


  1. 1.
    Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501CrossRefPubMedGoogle Scholar
  2. 2.
    Wong RO, Ghosh A (2002) Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3:803–812CrossRefPubMedGoogle Scholar
  3. 3.
    Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705PubMedGoogle Scholar
  4. 4.
    Lander AD, Fujii DK, Reichardt LF (1985) Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A 82:2183–2187CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gary DS, Milhavet O, Camandola S, Mattson MP (2003) Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem 84:878–890CrossRefPubMedGoogle Scholar
  6. 6.
    Rohrbough J, Rushton E, Woodruff E 3rd, Fergestad T, Vigneswaran K, Broadie K (2007) Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation. Genes Dev 21:2607–2628CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murase S, Owens DF, McKay RD (2011) In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci 31:7791–7800CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687CrossRefPubMedGoogle Scholar
  9. 9.
    Huntley GW (2012) Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 13:743–757CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A (2011) Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 71:1040–1053CrossRefPubMedGoogle Scholar
  11. 11.
    Tsien RY (2013) Very long-term memories may be stored in the pattern of holes in the perineuronal net. Proc Natl Acad Sci U S A 110:12456–12461CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Stawarski M, Rutkowska-Wlodarczyk I, Zeug A, Bijata M, Madej H, Kaczmarek L, Wlodarczyk J (2014) Genetically encoded FRET-based biosensor for imaging MMP-9 activity. Biomaterials 35:1402–1410CrossRefPubMedGoogle Scholar
  13. 13.
    Gould E, Woolley CS, McEwen BS (1991) Naturally occurring cell death in the developing dentate gyrus of the rat. J Comp Neurol 304:408–418CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrer I, Tortosa A, Blanco R, Martin F, Serrano T, Planas A, Macaya A (1994) Naturally occurring cell death in the developing cerebral cortex of the rat. Evidence of apoptosis-associated internucleosomal DNA fragmentation. Neurosci Lett 182:77–79CrossRefPubMedGoogle Scholar
  15. 15.
    Murase S, McKay RD (2012) Matrix metalloproteinase-9 regulates survival of neurons in newborn hippocampus. J Biol Chem 287:12184–12194CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 22:920–930PubMedGoogle Scholar
  17. 17.
    Dziembowska M, Milek J, Janusz A, Rejmak E, Romanowska E, Gorkiewicz T, Tiron A, Bramham CR et al (2012) Activity-dependent local translation of matrix metalloproteinase-9. J Neurosci 32:14538–14547CrossRefPubMedGoogle Scholar
  18. 18.
    Wang XB, Bozdagi O, Nikitczuk JS, Zhai ZW, Zhou Q, Huntley GW (2008) Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc Natl Acad Sci U S A 105:19520–19525CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Szepesi Z, Hosy E, Ruszczycki B, Bijata M, Pyskaty M, Bikbaev A, Heine M, Choquet D et al (2014) Synaptically released matrix metalloproteinase activity in control of structural plasticity and the cell surface distribution of GluA1-AMPA receptors. PLoS One 9, e98274CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smith AC, Kupchik YM, Scofield MD, Gipson CD, Wiggins A, Thomas CA, Kalivas PW (2014) Synaptic plasticity mediating cocaine relapse requires matrix metalloproteinases. Nat Neurosci 17:1655–1657CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spolidoro M, Putignano E, Munafo C, Maffei L, Pizzorusso T (2012) Inhibition of matrix metalloproteinases prevents the potentiation of nondeprived-eye responses after monocular deprivation in juvenile rats. Cereb Cortex 22:725–734CrossRefPubMedGoogle Scholar
  22. 22.
    Kaliszewska A, Bijata M, Kaczmarek L, Kossut M (2012) Experience-dependent plasticity of the barrel cortex in mice observed with 2-DG brain mapping and c-Fos: effects of MMP-9 KO. Cereb Cortex 22:2160–2170CrossRefPubMedGoogle Scholar
  23. 23.
    Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408CrossRefPubMedGoogle Scholar
  24. 24.
    Wilczynski GM, Konopacki FA, Wilczek E, Lasiecka Z, Gorlewicz A, Michaluk P, Wawrzyniak M, Malinowska M et al (2008) Important role of matrix metalloproteinase 9 in epileptogenesis. J Cell Biol 180:1021–1035CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lukasiuk K, Wilczynski GM, Kaczmarek L (2011) Extracellular proteases in epilepsy. Epilepsy Res 96:191–206CrossRefPubMedGoogle Scholar
  27. 27.
    Knobloch M, Mansuy IM (2008) Dendritic spine loss and synaptic alterations in Alzheimer's disease. Mol Neurobiol 37:73–82CrossRefPubMedGoogle Scholar
  28. 28.
    Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pfeiffer BE, Huber KM (2007) Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 27:3120–3130CrossRefPubMedGoogle Scholar
  30. 30.
    Sidhu H, Dansie LE, Hickmott PW, Ethell DW, Ethell IM (2014) Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J Neurosci 34:9867–9879CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Murase S, McKay RD (2006) A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 26:9750–9760CrossRefPubMedGoogle Scholar
  33. 33.
    Dougherty KA, Islam T, Johnston D (2012) Intrinsic excitability of CA1 pyramidal neurones from the rat dorsal and ventral hippocampus. J Physiol 590:5707–5722CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ang CW, Carlson GC, Coulter DA (2006) Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 26:11850–11856CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209CrossRefPubMedGoogle Scholar
  36. 36.
    Bianchi D, Marasco A, Limongiello A, Marchetti C, Marie H, Tirozzi B, Migliore M (2012) On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J Comput Neurosci 33:207–225CrossRefPubMedGoogle Scholar
  37. 37.
    Mitra P, Bokil H (2008) Observed brain dynamics. Oxford University Press, OxfordGoogle Scholar
  38. 38.
    White AM, Williams PA, Ferraro DJ, Clark S, Kadam SD, Dudek FE, Staley KJ (2006) Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J Neurosci Methods 152:255–266CrossRefPubMedGoogle Scholar
  39. 39.
    Jinde S, Belforte JE, Yamamoto J, Wilson MA, Tonegawa S, Nakazawa K (2009) Lack of kainic acid-induced gamma oscillations predicts subsequent CA1 excitotoxic cell death. Eur J Neurosci 30:1036–1055CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRefPubMedGoogle Scholar
  41. 41.
    Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907CrossRefPubMedGoogle Scholar
  42. 42.
    Soriano E, Cobas A, Fairen A (1986) Asynchronism in the neurogenesis of GABAergic and non-GABAergic neurons in the mouse hippocampus. Brain Res 395:88–92CrossRefPubMedGoogle Scholar
  43. 43.
    Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584CrossRefPubMedGoogle Scholar
  44. 44.
    Ben-Ari Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403CrossRefPubMedGoogle Scholar
  45. 45.
    Aujla PK, Huntley GW (2014) Early postnatal expression and localization of matrix metalloproteinases-2 and -9 during establishment of rat hippocampal synaptic circuitry. J Comp Neurol 522:1249–1263CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dmytriyeva O, Pankratova S, Owczarek S, Sonn K, Soroka V, Ridley CM, Marsolais A, Lopez-Hoyos M et al (2012) The metastasis-promoting S100A4 protein confers neuroprotection in brain injury. Nat Commun 3:1197CrossRefPubMedGoogle Scholar
  48. 48.
    Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10:136–141CrossRefPubMedGoogle Scholar
  49. 49.
    Pan L, North HA, Sahni V, Jeong SJ, McGuire TL, Berns EJ, Stupp SI, Kessler JA (2014) Beta1-Integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells. PLoS One 9, e104335CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vargova L, Sykova E (2014) Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos Trans R Soc Lond B Biol Sci 369Google Scholar
  51. 51.
    Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H, Kamei H, Nabeshima T et al (2011) Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 31:12963–12971CrossRefPubMedGoogle Scholar
  52. 52.
    Koshimizu H, Kiyosue K, Hara T, Hazama S, Suzuki S, Uegaki K, Nagappan G, Zaitsev E et al (2009) Multiple functions of precursor BDNF to CNS neurons: negative regulation of neurite growth, spine formation and cell survival. Mol Brain 2:27CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Baj G, Leone E, Chao MV, Tongiorgi E (2011) Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci U S A 108:16813–16818CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Michaluk P, Wawrzyniak M, Alot P, Szczot M, Wyrembek P, Mercik K, Medvedev N, Wilczek E et al (2011) Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J Cell Sci 124:3369–3380CrossRefPubMedGoogle Scholar
  55. 55.
    Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102CrossRefPubMedGoogle Scholar
  56. 56.
    Knapska E, Lioudyno V, Kiryk A, Mikosz M, Gorkiewicz T, Michaluk P, Gawlak M, Chaturvedi M et al (2013) Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. J Neurosci 33:14591–14600CrossRefPubMedGoogle Scholar
  57. 57.
    Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682CrossRefPubMedGoogle Scholar
  58. 58.
    Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47:725–737CrossRefPubMedGoogle Scholar
  59. 59.
    Varley ZK, Pizzarelli R, Antonelli R, Stancheva SH, Kneussel M, Cherubini E, Zacchi P (2011) Gephyrin regulates GABAergic and glutamatergic synaptic transmission in hippocampal cell cultures. J Biol Chem 286:20942–20951CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mohrmann R, Matthies HJ, Woodruff E 3rd, Broadie K (2008) Stoned B mediates sorting of integral synaptic vesicle proteins. Neuroscience 153:1048–1063CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD, Ehlers MD (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76:396–409CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yeghiazaryan M, Rutkowska-Wlodarczyk I, Konopka A, Wilczynski GM, Melikyan A, Korkotian E, Kaczmarek L, Figiel I (2014) DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity. PLoS One 9, e99789CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Konopka A, Grajkowska W, Ziemianska K, Roszkowski M, Daszkiewicz P, Rysz A, Marchel A, Koperski L et al (2013) Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. Epilepsy Res 104:45–58CrossRefPubMedGoogle Scholar
  64. 64.
    Hoehna Y, Uckermann O, Luksch H, Stefovska V, Marzahn J, Theil M, Gorkiewicz T, Gawlak M et al (2012) Matrix metalloproteinase 9 regulates cell death following pilocarpine-induced seizures in the developing brain. Neurobiol Dis 48:339–347CrossRefPubMedGoogle Scholar
  65. 65.
    Jourquin J, Tremblay E, Decanis N, Charton G, Hanessian S, Chollet AM, Le Diguardher T, Khrestchatisky M et al (2003) Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci 18:1507–1517CrossRefPubMedGoogle Scholar
  66. 66.
    Kim GW, Kim HJ, Cho KJ, Kim HW, Cho YJ, Lee BI (2009) The role of MMP-9 in integrin-mediated hippocampal cell death after pilocarpine-induced status epilepticus. Neurobiol Dis 36:169–180CrossRefPubMedGoogle Scholar
  67. 67.
    Thyagarajan T, Totey S, Danton MJ, Kulkarni AB (2003) Genetically altered mouse models: the good, the bad, and the ugly. Crit Rev Oral Biol Med 14:154–174CrossRefPubMedGoogle Scholar
  68. 68.
    Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052CrossRefPubMedGoogle Scholar
  69. 69.
    Shen S, Lang B, Nakamoto C, Zhang F, Pu J, Kuan SL, Chatzi C, He S et al (2008) Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. J Neurosci 28:10893–10904CrossRefPubMedGoogle Scholar
  70. 70.
    Fujita E, Dai H, Tanabe Y, Zhiling Y, Yamagata T, Miyakawa T, Tanokura M, Momoi MY et al (2010) Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis 1, e47CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Janusz A, Milek J, Perycz M, Pacini L, Bagni C, Kaczmarek L, Dziembowska M (2013) The Fragile X mental retardation protein regulates matrix metalloproteinase 9 mRNA at synapses. J Neurosci 33:18234–18241CrossRefPubMedGoogle Scholar
  72. 72.
    Cheng TL, Wang Z, Liao Q, Zhu Y, Zhou WH, Xu W, Qiu Z (2014) MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell 28:547–560CrossRefPubMedGoogle Scholar
  73. 73.
    Della Sala G, Pizzorusso T (2014) Synaptic plasticity and signaling in Rett syndrome. Dev Neurobiol 74:178–196CrossRefPubMedGoogle Scholar
  74. 74.
    Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53:2067–2078CrossRefPubMedGoogle Scholar
  75. 75.
    Najjar S, Pearlman DM (2015) Neuroinflammation and white matter pathology in schizophrenia: systematic review. Schizophr Res 161:102–112CrossRefPubMedGoogle Scholar
  76. 76.
    Kidd SA, Lachiewicz A, Barbouth D, Blitz RK, Delahunty C, McBrien D, Visootsak J, Berry-Kravis E (2014) Fragile X syndrome: a review of associated medical problems. Pediatrics 134:995–1005CrossRefPubMedGoogle Scholar
  77. 77.
    Canitano R (2007) Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 16:61–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sachiko Murase
    • 1
    • 2
    Email author
  • Crystal L. Lantz
    • 2
  • Eunyoung Kim
    • 3
  • Nitin Gupta
    • 4
  • Richard Higgins
    • 2
  • Mark Stopfer
    • 4
  • Dax A. Hoffman
    • 3
  • Elizabeth M. Quinlan
    • 2
  1. 1.Laboratory of Molecular Biology, National Institute of Neurological Disorder and StrokeNational Institutes of HealthBethesdaUSA
  2. 2.Department of Biology and Neuroscience and Cognitive Sciences ProgramUniversity of MarylandCollege ParkUSA
  3. 3.Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  4. 4.Laboratory of Cellular and Synaptic Neurophysiology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA

Personalised recommendations