Skip to main content

Advertisement

Log in

Subthreshold Concentrations of Melatonin and Galantamine Improves Pathological AD-Hallmarks in Hippocampal Organotypic Cultures

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Melatonin is a neurohormone whose levels are significantly reduced or absent in Alzheimer’s disease (AD) patients. In these patients, acetylcholinesterase inhibitors (AChEI) are the major drug class used for their treatment; however, they present unwanted cholinergic side effects and have provided limited efficacy in clinic. Because combination therapy is being extensively used to treat different pathological diseases such as cancer or acquired immune deficiency syndrome, we posed this study to evaluate if melatonin in combination with an AChEI, galantamine, could provide beneficial properties in a novel in vitro model of AD. Thus, we subjected organotypic hippocampal cultures (OHCs) to subtoxic concentrations of β-amyloid (0.5 μM βA) plus okadaic acid (1 nM OA), for 4 days. This treatment increased by 95 % cell death, which was mainly apoptotic as shown by positive TUNEL staining. In addition, the combination of βA/OA increased Thioflavin S aggregates, hyperphosphorylation of Tau, oxidative stress (increased DCFDA fluorescence), and neuroinflammation (increased IL-1β and TNFα). Under these experimental conditions, melatonin (1–1000 nM) and galantamine (10–1000 nM), co-incubated with the toxic stimuli, caused a concentration-dependent neuroprotection; maximal neuroprotective effect was achieved at 1 μM of melatonin and galantamine. Most effective was the finding that combination of sub-effective concentrations of melatonin (1 nM) and galantamine (10 nM) provided a synergic anti-apoptotic effect and reduction of most of the AD-related pathological hallmarks observed in the βA/OA model. Therefore, we suggest that supplementation of melatonin in combination with lower doses of AChEIs could be an interesting strategy for AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duff K, Suleman F (2004) Transgenic mouse models of Alzheimer’s disease: how useful have they been for therapeutic development? Brief Funct Genom Proteomic 3(1):47–59

    Article  CAS  Google Scholar 

  2. Hardy J (2002) Testing times for the amyloid cascade hypothesis. Neurobiol Aging 23(6):1073–1074

    Article  PubMed  Google Scholar 

  3. Avila J (2000) Tau aggregation into fibrillar polymers: taupathies. FEBS Lett 476(1-2):89–92

    Article  CAS  PubMed  Google Scholar 

  4. Bloom GS (2014) Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. doi:10.1001/jamaneurol.2013.5847 1817720

    Article  PubMed  Google Scholar 

  5. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol 56(3):359–384

    Article  CAS  PubMed  Google Scholar 

  6. Leon R, Garcia AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33(1):139–189. doi:10.1002/med.20248

    Article  CAS  PubMed  Google Scholar 

  7. Gareri P, Putignano D, Castagna A, Cotroneo AM, De Palo G, Fabbo A, Forgione L, Giacummo A et al (2014) Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer’s Disease: the MEMAGE study. J Alzheimers Dis 41(2):633–640. doi:10.3233/JAD-132735

    CAS  PubMed  Google Scholar 

  8. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291(3):317–324. doi:10.1001/jama.291.3.317

    Article  CAS  PubMed  Google Scholar 

  9. Reiter RJ, Paredes SD, Manchester LC, Tan DX (2009) Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 44(4):175–200. doi:10.1080/10409230903044914

    Article  CAS  PubMed  Google Scholar 

  10. Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51(1):1–16. doi:10.1111/j.1600-079X.2011.00916.x

    Article  CAS  PubMed  Google Scholar 

  11. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54(3):245–257. doi:10.1111/jpi.12010

    Article  CAS  PubMed  Google Scholar 

  12. Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 1842(8):1208–1218. doi:10.1016/j.bbadis.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  13. Rosales-Corral SA, Acuna-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S et al (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52(2):167–202. doi:10.1111/j.1600-079X.2011.00937.x

    Article  CAS  PubMed  Google Scholar 

  14. Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012:472932. doi:10.1155/2012/472932

    Article  PubMed  PubMed Central  Google Scholar 

  15. Konrath EL, Passos Cdos S, Klein-Junior LC, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 65(12):1701–1725. doi:10.1111/jphp.12090

    Article  CAS  PubMed  Google Scholar 

  16. Nakamizo T, Kawamata J, Yamashita H, Kanki R, Kihara T, Sawada H, Akaike A, Shimohama S (2005) Stimulation of nicotinic acetylcholine receptors protects motor neurons. Biochem Biophys Res Commun 330(4):1285–1289. doi:10.1016/j.bbrc.2005.03.115

    Article  CAS  PubMed  Google Scholar 

  17. Park JE, Lee ST, Im WS, Chu K, Kim M (2008) Galantamine reduces striatal degeneration in 3-nitropropionic acid model of Huntington’s disease. Neurosci Lett 448(1):143–147. doi:10.1016/j.neulet.2008.10.020

    Article  CAS  PubMed  Google Scholar 

  18. Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 54(10):1299–1321. doi:10.1211/002235702760345374

    Article  CAS  PubMed  Google Scholar 

  19. Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, Reiter RJ, Efthimiopoulos S, Robakis NK (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci: Off J Soc Neurosci 17(5):1683–1690

    CAS  Google Scholar 

  20. Yang X, Yang Y, Fu Z, Li Y, Feng J, Luo J, Zhang Q, Wang Q et al (2011) Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 25(8):1118–1125. doi:10.1177/0269881110367723

    Article  CAS  PubMed  Google Scholar 

  21. Iqbal K, Alonso AC, Gong CX, Khatoon S, Pei JJ, Wang JZ, Grundke-Iqbal I (1998) Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles. J Neural Transm Suppl 53:169–180

    Article  CAS  PubMed  Google Scholar 

  22. Buendia I, Egea J, Parada E, Navarro E, Leon R, Rodriguez-Franco MI, Lopez MG (2014) The melatonin-N, N-Dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem Neurosci. doi:10.1021/cn5002073

    PubMed  Google Scholar 

  23. Stoppini L, Parisi L, Oropesa C, Muller D (1997) Sprouting and functional recovery in co-cultures between old and young hippocampal organotypic slices. Neuroscience 80(4):1127–1136

    Article  CAS  PubMed  Google Scholar 

  24. Ha HC, Woster PM, Yager JD, Casero RA Jr (1997) The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A 94(21):11557–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38(3):145–152. doi:10.1111/j.1600-079X.2004.00196.x

    Article  CAS  PubMed  Google Scholar 

  26. Iqbal K, Grundke-Iqbal I (2000) Alzheimer disease is multifactorial and heterogeneous. Neurobiol Aging 21(6):901–902, discussion 903-904

    Article  CAS  PubMed  Google Scholar 

  27. Marlatt MW, Bauer J, Aronica E, van Haastert ES, Hoozemans JJ, Joels M, Lucassen PJ (2014) Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014:693851. doi:10.1155/2014/693851

    Article  PubMed  PubMed Central  Google Scholar 

  28. Egea J, Martin-de-Saavedra MD, Parada E, Romero A, Del Barrio L, Rosa AO, Garcia AG, Lopez MG (2012) Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology 62(2):1082–1090. doi:10.1016/j.neuropharm.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  29. Lorrio S, Sobrado M, Arias E, Roda JM, Garcia AG, Lopez MG (2007) Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther 322(2):591–599. doi:10.1124/jpet.107.122747

    Article  CAS  PubMed  Google Scholar 

  30. Nassif M, Hoppe J, Santin K, Frozza R, Zamin LL, Simao F, Horn AP, Salbego C (2007) Beta-amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3beta, and PTEN. Neurochem Int 50(1):229–235. doi:10.1016/j.neuint.2006.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, Battastini AM, Salbego C (2010) Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res 48(3):230–238. doi:10.1111/j.1600-079X.2010.00747.x

    Article  CAS  PubMed  Google Scholar 

  32. Frozza RL, Horn AP, Hoppe JB, Simao F, Gerhardt D, Comiran RA, Salbego CG (2009) A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures. Neurochem Res 34(2):295–303. doi:10.1007/s11064-008-9776-8

    Article  CAS  PubMed  Google Scholar 

  33. Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski HM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89(1):35–41

    Article  CAS  PubMed  Google Scholar 

  34. Li WP, Chan WY, Lai HW, Yew DT (1997) Terminal dUTP nick end labeling (TUNEL) positive cells in the different regions of the brain in normal aging and Alzheimer patients. J Mol Neurosci 8(2):75–82. doi:10.1007/BF02736774

    Article  CAS  PubMed  Google Scholar 

  35. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062. doi:10.1073/pnas.0905529106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, Jiang T, Zhu XC et al (2014) Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 41(2):615–631. doi:10.3233/JAD-132690

    CAS  PubMed  Google Scholar 

  37. Hansen RA, Gartlehner G, Lohr KN, Kaufer DI (2007) Functional outcomes of drug treatment in Alzheimer’s disease: a systematic review and meta-analysis. Drugs Aging 24(2):155–167

    Article  CAS  PubMed  Google Scholar 

  38. Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadgieva N (2003) Antioxidant properties of galantamine hydrobromide. Z Naturforsch C 58(5-6):361–365

    Article  CAS  PubMed  Google Scholar 

  39. Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C et al (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47(1):82–96. doi:10.1111/j.1600-079X.2009.00692.x

    Article  CAS  PubMed  Google Scholar 

  40. Slats D, Claassen JA, Verbeek MM, Overeem S (2013) Reciprocal interactions between sleep, circadian rhythms and Alzheimer’s disease: focus on the role of hypocretin and melatonin. Ageing Res Rev 12(1):188–200. doi:10.1016/j.arr.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  41. Kvetnoy IM (1999) Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J 31(1):1–12

    Article  CAS  PubMed  Google Scholar 

  42. Reiter RJ (1994) Pineal function during aging: attenuation of the melatonin rhythm and its neurobiological consequences. Acta Neurobiol Exp (Wars) 54(Suppl):31–39

    Google Scholar 

  43. Srinivasan V, Maestroni GJ, Cardinali DP, Esquifino AI, Perumal SR, Miller SC (2005) Melatonin, immune function and aging. Immun Ageing 2:17. doi:10.1186/1742-4933-2-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2012) The role of melatonin in acute myocardial infarction. Front Biosci (Landmark Ed) 17:2433–2441

    Article  Google Scholar 

  45. Hardeland R (2009) Melatonin: signaling mechanisms of a pleiotropic agent. Biofactors 35(2):183–192. doi:10.1002/biof.23

    Article  CAS  PubMed  Google Scholar 

  46. Acuna Castroviejo D, Lopez LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11(2):221–240

    Article  PubMed  Google Scholar 

  47. Wade AG, Farmer M, Harari G, Fund N, Laudon M, Nir T, Frydman-Marom A, Zisapel N (2014) Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging 9:947–961. doi:10.2147/CIA.S65625

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competence Ref. SAF2012-32223 to MGL. IB has a predoctoral FPU fellowship from the Spanish Ministry of Economy and Competence (AP2010/1219), EP has a predoctoral FPI fellowship from the Spanish Ministry of Economy and Competence, and EN (FPI-UAM2012) from Universidad Autónoma de Madrid. IS Carlos III, Programa Miguel Servet (CP11/00165) and FIS proyect (grant PI14/00372) and European Commission, Marie Curie Actions FP7 (FP7-People-2012-CIG-322156) to RL. JE has a grant from IS Carlos III, Programa Miguel Servet (CP14/00008) and IS Carlos III research contract under Miguel Servet Program. We would like to thank Vanessa Gómez Rangel for technical support, Mª Dolores Morales García and Ana Isabel de las Heras Núñez from the Confocal Service of de Universidad Autónoma de Madrid. We also thank the continuous support of Fundación Teófilo Hernando.

Compliance with Ethical Standards

All animal assays were carried out following the Guide for the Care and Use of Laboratory Animals and were previously approved by the Institutional Ethics Committee of the Autonomous University of Madrid, Spain, according to the European guidelines for the use and care of animals for research in accordance with the European Union Directive of 22 September 2010 (2010/63/UE) and with the Spanish Royal Decree of 1 February 2013 (53/2013). All efforts were made to minimize the number of animals used and their suffering.

Conflict of Interest

All authors have no conflict of interest.

Author Contributions

Izaskun Buendia has contributed to acquisition of data, data analysis/interpretation, writing, and critical revision of the manuscript. Esther Parada has contributed to acquisition of data and data analysis/interpretation. Elisa Navarro has contributed to acquisition of data and data analysis/interpretation. Rafael León has contributed to critical revision of the manuscript. Pilar Negredo has contributed to critical revision of the manuscript. Javier Egea has contributed to concept/design, acquisition of data, data analysis/interpretation, drafting of the manuscript, critical revision of the manuscript, and approval of the article. Manuela García López has contributed to concept/design, drafting of the manuscript, critical revision of the manuscript, and approval of the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Egea or M. G. López.

Additional information

I. Buendia and E. Parada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buendia, I., Parada, E., Navarro, E. et al. Subthreshold Concentrations of Melatonin and Galantamine Improves Pathological AD-Hallmarks in Hippocampal Organotypic Cultures. Mol Neurobiol 53, 3338–3348 (2016). https://doi.org/10.1007/s12035-015-9272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9272-5

Keywords

Navigation