Skip to main content

Computational Models for Predicting Outcomes of Neuroprosthesis Implantation: the Case of Cochlear Implants

Abstract

Electrical stimulation of the brain has resulted in the most successful neuroprosthetic techniques to date: deep brain stimulation (DBS) and cochlear implants (CI). In both cases, there is a lack of pre-operative measures to predict the outcomes after implantation. We argue that highly detailed computational models that are specifically tailored for a patient can provide useful information to improve the precision of the nervous system electrode interface. We apply our framework to the case of CI, showing how we can predict nerve response for patients with both intact and degenerated nerve fibers. Then, using the predicted response, we calculate a metric for the usefulness of the stimulation protocol and use this information to rerun the simulations with better parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Rodriguez-Oroz M, Obeso J, Lang A, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(10):2240–2249

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Wilson BS, Dorman MF (2008) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242(1):3–21

    PubMed Central  Article  PubMed  Google Scholar 

  3. 3.

    McIntyre CC, Savasta M, Walter BL, Vitek JL (2004) How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol 21(1):40–50

    Article  PubMed  Google Scholar 

  4. 4.

    Boyd PJ (2011) Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear 32(4):411–427

    Article  PubMed  Google Scholar 

  5. 5.

    Maks CB, Butson CR, Walter BL, Vitek JL, McIntyre CC (2009) Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes. J Neurol Neurosurg Psychiatry 80(6):659–666

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. 6.

    Malherbe TK, Hanekom T, Hanekom JJ (2013) Can subject-specific single-fibre electrically evoked auditory brainstem response data be predicted from a model? Med Eng Phys 35(7):926–936

    Article  PubMed  Google Scholar 

  7. 7.

    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  PubMed  Google Scholar 

  8. 8.

    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, ACM, vol 21, pp 163–169

  9. 9.

    Paulsen RR, Baerentzen JA, Larsen R (2010) Markov random field surface reconstruction. Vis Comput Graph IEEE Trans 16(4):636–646

    Article  Google Scholar 

  10. 10.

    Ruokolainen J, Lyly M (2000) ELMER, a computational tool for PDEs—application to Vibroacoustics. CSC News 12(4):30–32

    Google Scholar 

  11. 11.

    Råback P, Malinen M, Ruokolainen J, Pursula A, Zwinger T (2013) Elmer models manual. CSC–IT Center for Science, Helsinki

    Google Scholar 

  12. 12.

    Saba R (2012) Cochlear implant modelling: stimulation and power consumption. URL http://eprints.soton.ac.uk/348818/

  13. 13.

    Frijns JHM, De Snoo S, Schoonhoven R (1995) Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res 87(1):170–186

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Briaire JJ, Frijns JH (2006) The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res 214(1):17–27

    Article  PubMed  Google Scholar 

  15. 15.

    Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python. URL http://www.scipy.org/

  16. 16.

    Vanpoucke FJ, Boermans P, Frijns JH (2012) Assessing the placement of a cochlear electrode array by multidimensional scaling. Biomed Eng IEEE Trans 59(2):307–310

    Article  Google Scholar 

  17. 17.

    Gani M, Valentini G, Sigrist A, Kós MI, Boëx C (2007) Implications of deep electrode insertion on cochlear implant fitting. J Assoc Res Otolaryngol 8(1):69–83

    PubMed Central  Article  PubMed  Google Scholar 

  18. 18.

    Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8(2):220–233

    PubMed Central  Article  PubMed  Google Scholar 

  19. 19.

    Mistrík P, Mullaley C, Mammano F, Ashmore J (2009) Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound. J R Soc Interface 6(32):279–291

    PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the European Union Seventh Frame Programme (FP7/2007-2013) under grant agreement 304857.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mario Ceresa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ceresa, M., Mangado, N., Andrews, R.J. et al. Computational Models for Predicting Outcomes of Neuroprosthesis Implantation: the Case of Cochlear Implants. Mol Neurobiol 52, 934–941 (2015). https://doi.org/10.1007/s12035-015-9257-4

Download citation

Keywords

  • Computational models
  • Finite element analysis
  • Cochlear implants
  • Deep brain stimulation