Skip to main content

Advertisement

Log in

Depletion of B cell CLL/Lymphoma 11B Gene Expression Represses Glioma Cell Growth

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

B cell CLL/lymphoma 11B (Bcl11b), a C2H2 zinc finger transcription factor, not only serves as a critical regulator in development but also plays the controversial role in T cell acute lymphoblastic leukemia (T-ALL). We previously found that the enriched expression of Bcl11b was detected in high tumorigenic C6 glioma cells. However, the role of Bcl11b in glioma malignancy and its mechanisms remains to be uncovered. In this study, using the lentivirus-mediated knockdown (KD) approach, we found that Bcl11b KD in tumorigenic C6 cells reduced the cell proliferation, colony formation, and migratory ability. The results were further verified using two human malignant glioma cell lines, U87 and U251 cells. A cyclin-dependent kinase inhibitor p21, a known Bcl11b target, was significantly upregulated in tumorigenic C6, U87, and U251 cells after Bcl11b KD. Cellular senescence was observed by examination of the β-galactosidase activity in U87 and U251 cells with Bcl11b KD. Reduced expression of stemness gene Sox-2 and its downstream effector Bmi-1 was also observed in U87 and U251 cells with Bcl11b KD. These results suggest that the ablation of Bcl11b gene expression induced glioma cell senescence. Propidium iodide (PI) staining combined with flow cytometry analysis also showed that Bcl11b KD led to the cell cycle arrest of U87 and U251 cells at the G0/G1 or at the S phase, indicating that Bcl11b is required for glioma cell cycle progression. Together, this is the first study to show that the inhibition of Bcl11b suppresses glioma cell growth by regulating the expression of the cell cycle regulator p21 and stemness-associated genes (Sox-2/Bmi-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Bcl11b:

B cell CLL/lymphoma 11B

CKI:

Cyclin-dependent kinase inhibitor

EtOH:

Ethanol

HCl:

Hydrogen chloride

HDAC:

Histone deacetylase

KD:

Knockdown

PI:

Propidium iodide

References

  1. Avram D, Fields A, Pretty On Top K, Nevrivy DJ, Ishmael JE, Leid M (2000) Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 275(14):10315–10322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S, Kominami R (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4(6):533–539

    Article  CAS  PubMed  Google Scholar 

  3. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221

    Article  CAS  PubMed  Google Scholar 

  4. Golonzhka O, Metzger D, Bornert JM, Bay BK, Gross MK, Kioussi C, Leid M (2009) Ctip2/Bcl11b controls ameloblast formation during mammalian odontogenesis. Proc Natl Acad Sci U S A 106(11):4278–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28(3):622–632

    Article  CAS  PubMed  Google Scholar 

  6. Golonzhka O, Liang X, Messaddeq N, Bornert JM, Campbell AL, Metzger D, Chambon P, Ganguli-Indra G, Leid M, Indra AK (2009) Dual role of COUP-TF-interacting protein 2 in epidermal homeostasis and permeability barrier formation. J Investig Dermatol 129(6):1459–1470

    Article  CAS  PubMed  Google Scholar 

  7. Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T, Mishima Y, Niwa O, Kominami R (2003) Homozygous deletions and point mutations of the Rit1/Bcl11b gene in gamma-ray induced mouse thymic lymphomas. Biochem Biophys Res Commun 301(2):598–603

    Article  CAS  PubMed  Google Scholar 

  8. Cismasiu VB, Adamo K, Gecewicz J, Duque J, Lin Q, Avram D (2005) BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 24(45):6753–6764

    Article  CAS  PubMed  Google Scholar 

  9. Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, Zeichner SL, Aunis D, Van Lint C, Rohr O (2009) p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 28(38):3380–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Topark-Ngarm A, Golonzhka O, Peterson VJ, Barrett B Jr, Martinez B, Crofoot K, Filtz TM, Leid M (2006) CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. J Biol Chem 281(43):32272–32283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Przybylski GK, Dik WA, Wanzeck J, Grabarczyk P, Majunke S, Martin-Subero JI, Siebert R, Dolken G, Ludwig WD, Verhaaf B, van Dongen JJ, Schmidt CA, Langerak AW (2005) Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia 19(2):201–208

    Article  CAS  PubMed  Google Scholar 

  12. Gutierrez A, Kentsis A, Sanda T, Holmfeldt L, Chen SC, Zhang J, Protopopov A, Chin L, Dahlberg SE, Neuberg DS, Silverman LB, Winter SS, Hunger SP, Sallan SE, Zha S, Alt FW, Downing JR, Mullighan CG, Look AT (2011) The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118(15):4169–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamimura K, Ohi H, Kubota T, Okazuka K, Yoshikai Y, Wakabayashi Y, Aoyagi Y, Mishima Y, Kominami R (2007) Haploinsufficiency of Bcl11b for suppression of lymphomagenesis and thymocyte development. Biochem Biophys Res Commun 355(2):538–542

    Article  CAS  PubMed  Google Scholar 

  14. Nagel S, Kaufmann M, Drexler HG, MacLeod RA (2003) The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63(17):5329–5334

    CAS  PubMed  Google Scholar 

  15. Grabarczyk P, Przybylski GK, Depke M, Volker U, Bahr J, Assmus K, Broker BM, Walther R, Schmidt CA (2007) Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 26(26):3797–3810

    Article  CAS  PubMed  Google Scholar 

  16. Huang X, Chen S, Shen Q, Chen S, Yang L, Grabarczyk P, Przybylski GK, Schmidt CA, Li Y (2011) Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B-935-siRNA. Hematology 16(4):236–242

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D, Yang L, Chen S, Xu B, Zhong M, Jiang J, Hu Y, Su H, Zhang M, Huang X, Geng S, Weng J, Du X, Liu P, Li Y, Liu H, Yao Y, Li P (2015) Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer 14(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wiles ET, Lui-Sargent B, Bell R, Lessnick SL (2013) BCL11B is up-regulated by EWS/FLI and contributes to the transformed phenotype in Ewing sarcoma. PLoS One 8(3), e59369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robins HI, Peterson CG, Mehta MP (2003) Combined modality treatment for central nervous system malignancies. Semin Oncol 30(4 Suppl 9):11–22

    Article  CAS  PubMed  Google Scholar 

  20. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81(3):447–455

    Article  CAS  PubMed  Google Scholar 

  21. Lam-Himlin D, Espey MG, Perry G, Smith MA, Castellani RJ (2006) Malignant glioma progression and nitric oxide. Neurochem Int 49(8):764–768

    Article  CAS  PubMed  Google Scholar 

  22. Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS, Nelson SF (2003) Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22(31):4918–4923

    Article  CAS  PubMed  Google Scholar 

  23. Fang KM, Yang CS, Lin TC, Chan TC, Tzeng SF (2014) Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro-Oncology 16(4):552–566

    Article  CAS  PubMed  Google Scholar 

  24. Chai KM, Wang CY, Liaw HJ, Fang KM, Yang CS, Tzeng SF (2014) Downregulation of BRCA1-BRCA2-containing complex subunit 3 sensitizes glioma cells to temozolomide. Oncotarget 5(21):10901–10915

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim HS, Heo JI, Park SH, Shin JY, Kang HJ, Kim MJ, Kim SC, Kim J, Park JB, Lee JY (2014) Transcriptional activation of p21(WAF(1)/CIP(1)) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts. Mol Biol Rep 41(4):2397–2408

    Article  CAS  PubMed  Google Scholar 

  26. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  CAS  PubMed  Google Scholar 

  27. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE, Huang HJ, Friedmann T, de Tribolet N, Cavenee WK (1994) Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54(3):649–652

    PubMed  Google Scholar 

  28. Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T (2014) The expressions of stem cell markers: Oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol 47(1):1–11

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63(11):2705–2715

    CAS  PubMed  Google Scholar 

  31. Ninomiya Y, Cui X, Yasuda T, Wang B, Yu D, Sekine-Suzuki E, Nenoi M (2014) Arsenite induces premature senescence via p53/p21 pathway as a result of DNA damage in human malignant glioblastoma cells. BMB Rep 47(10):575–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang JW, Zhang SS, Song JR, Sun K, Zong C, Zhao QD, Liu WT, Li R, Wu MC, Wei LX (2014) Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem Pharmacol 90(3):265–275

    Article  CAS  PubMed  Google Scholar 

  33. Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G, Maciaczyk J, Kahlert U, Jain D, Bar E, Cohen KJ, Eberhart CG (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ye L, Wang C, Yu G, Jiang Y, Sun D, Zhang Z, Yu X, Li X, Wei W, Liu P, Cheng J, Du B, Hu L (2014) Bmi-1 induces radioresistance by suppressing senescence in human U87 glioma cells. Oncol Lett 8(6):2601–2606

    PubMed  PubMed Central  Google Scholar 

  35. Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Suzuki K, Narita Y, Shibui S, Kayama T, Kitanaka C (2013) Resveratrol promotes proteasome-dependent degradation of Nanog via p53 activation and induces differentiation of glioma stem cells. Stem Cell Res 11(1):601–610

    Article  CAS  PubMed  Google Scholar 

  36. Liu ZG, Liu L, Xu LH, Yi W, Tao YL, Tu ZW, Li MZ, Zeng MS, Xia YF (2012) Bmi-1 induces radioresistance in MCF-7 mammary carcinoma cells. Oncol Rep 27(4):1116–1122

    CAS  PubMed  Google Scholar 

  37. Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M, Bachmann M, Rieber EP, Weigle B (2007) Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br J Cancer 96(8):1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Council, Taiwan (NSC99-2628-B-006-030-MY3, NSC 102-2314-B-006-058, and NSC 102-2811-B-006-017).

Ethical Statement

The study did not involve any human participants and/or animals.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Fen Tzeng.

Additional information

Chih-Kai Liao and Kuan-Min Fang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material Fig. S1

Bcl11b knockdown induces cell senescence of U87 and C6 cells. U87 (A) and C6-1 (B) cells infected by lenti-sh-ctrl (mock), lenti-sh-hBcl11b (KD1) and lenti-sh-rno-1682 (KD2) were reseeded in a 96-well plate. Following incubation for 24 h, the cells were lysed and then subjected to 96-well cellular senescence assay kit (Cell Biolabs, Inc.). Absorbance was measured at 360 nm (Excitation)/465 nm (Emission) using an ELISA-plated reader. The quantitative data represent as relative fluorescence units (RFU) of 3 independent experiments.* p < 0.05 versus mock. (DOCX 67 kb)

Supplementary Material Table 1

The measurement of in vivo tumor size in C6 glioma with Bcl11b kncokdown. 1×106 cells of C6-1 cells were infected by lentivirus containing sh-ctrl (mock), by sh-hBcl11b-916 (KD1), or by sh-rnoBcl11b-1682 (KD2). These cells were then implanted into rat cerebral cortex. At 14 dpi, the isolated rat brains were sectioned and then were subjected into H&E staining. UTHSCSA Image tool for Windows was used for the measurement of the tumor size. The tumor size (mm3) in each glioma-bearing brain slice was analyzed by measurement of tumor area (mm2) multiplied by slice thickness (20 μm). The total tumor volume (mm3) in one animal was estimated by summing up the tumor sizes (mm3). (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, CK., Fang, KM., Chai, K. et al. Depletion of B cell CLL/Lymphoma 11B Gene Expression Represses Glioma Cell Growth. Mol Neurobiol 53, 3528–3539 (2016). https://doi.org/10.1007/s12035-015-9231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9231-1

Keywords

Navigation