GNE Myopathy and Cell Apoptosis: A Comparative Mutation Analysis

Abstract

In a number of genetic disorders such as GNE myopathy, it is not clear how mutations in target genes result in disease phenotype. GNE myopathy is a progressive neuro-degenerative disorder associated with homozygous or compound heterozygous missense mutations in either epimerase or kinase domain of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). This bifunctional enzyme catalyses the rate limiting step in sialic acid biosynthesis. Many mechanisms have been suggested as possible cause of muscle degeneration. These include hyposialylation of critical proteins, defects in cytoskeletal network, sarcomere organization and apoptosis. In order to elucidate the role of GNE in cell apoptosis, we have used HEK cell-based model system overexpressing pathologically relevant GNE mutations. These cells display a reduction in the levels of sialic acid-bound glycoconjugates. These mutants GNE overexpressing cells have defect in cell proliferation as compared to vector or wild-type GNE (wtGNE) controls. Moreover, effect of different GNE mutations on cell apoptosis was also observed using staining with annexin V-FITC and TUNEL assay. The downstream apoptosis signalling pathway involving activation of caspases and increased PARP cleavage were observed in all GNE mutant cell lines. In addition, morpho-structural changes in mitochondria in cells overexpressing different GNE mutants were noticed by transmission electron microscopy, and mitochondrial transmembrane potential was found to be altered in absence of functional GNE. Our results clearly indicate role of GNE in mitochondria-dependent cell apoptosis and provide insights into the pathomechanism of GNE myopathy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Severi E, Hood DW, Thomas GH (2007) Sialic acid utilization by bacterial pathogens. Microbiology 153(Pt 9):2817–2822. doi:10.1099/mic.0.2007/009480-0

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Frenzel R, Krohn K, Eszlinger M, Tonjes A, Paschke R (2005) Sialylation of human thyrotropin receptor improves and prolongs its cell-surface expression. Mol Pharmacol 68(4):1106–1113. doi:10.1124/mol.105.012906

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Edelman GM, Crossin KL (1991) Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem 60:155–190. doi:10.1146/annurev.bi.60.070191.001103

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Narayanan S (1994) Sialic acid as a tumor marker. Ann Clin Lab Sci 24(4):376–384

    CAS  PubMed  Google Scholar 

  5. 5.

    Wielgat P, Braszko JJ (2012) Significance of the cell adhesion molecules and sialic acid in neurodegeneration. Adv Med Sci 57(1):23–30. doi:10.2478/v10039-012-0011-0

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Prajna K, Kumar JA, Rai S, Shetty SK, Rai T, Shrinidhi, Begum M, Shashikala MD (2013) Predictive value of serum sialic Acid in type-2 diabetes mellitus and its complication (nephropathy). J Clin Diagn Res 7(11):2435–2437. doi:10.7860/JCDR/2013/6210.3567

    CAS  Google Scholar 

  7. 7.

    Ito M, Sugihara K, Asaka T, Toyama T, Yoshihara T, Furuichi K, Wada T, Asano M (2012) Glycoprotein hyposialylation gives rise to a nephrotic-like syndrome that is prevented by sialic acid administration in GNE V572L point-mutant mice. PLoS One 7(1):e29873. doi:10.1371/journal.pone.0029873

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Valles-Ayoub Y, Esfandiarifard S, Sinai P, Carbajo R, Khokher Z, No D, Pietruszka M, Darvish B et al (2012) Serum neural cell adhesion molecule is hyposialylated in hereditary inclusion body myopathy. Genet Test Mol Biomarkers 16(5):313–317. doi:10.1089/gtmb.2011.0146

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Huizing M, Krasnewich DM (2009) Hereditary inclusion body myopathy: a decade of progress. Biochim Biophys Acta 1792(9):881–887. doi:10.1016/j.bbadis.2009.07.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hinderlich S, Weidemann W, Yardeni T, Horstkorte R, Huizing M (2013) UDP-GlcNAc 2-Epimerase/ManNAc Kinase (GNE): a Master Regulator of Sialic Acid Synthesis. Top Curr Chem. doi:10.1007/128_2013_464

    Google Scholar 

  11. 11.

    Leroy JG, Seppala R, Huizing M, Dacremont G, De Simpel H, Van Coster RN, Orvisky E, Krasnewich DM et al (2001) Dominant inheritance of sialuria, an inborn error of feedback inhibition. Am J Hum Genet 68(6):1419–1427. doi:10.1086/320598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ghaderi D, Strauss HM, Reinke S, Cirak S, Reutter W, Lucka L, Hinderlich S (2007) Evidence for dynamic interplay of different oligomeric states of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase by biophysical methods. J Mol Biol 369(3):746–758. doi:10.1016/j.jmb.2007.03.037

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Tong Y, Tempel W, Nedyalkova L, Mackenzie F, Park HW (2009) Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS One 4(10):e7165. doi:10.1371/journal.pone.0007165

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Eisenberg I, Avidan N, Potikha T, Hochner H, Chen M, Olender T, Barash M, Shemesh M et al (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29(1):83–87. doi:10.1038/ng718

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Seppala R, Tietze F, Krasnewich D, Weiss P, Ashwell G, Barsh G, Thomas GH, Packman S et al (1991) Sialic acid metabolism in sialuria fibroblasts. J Biol Chem 266(12):7456–7461

    CAS  PubMed  Google Scholar 

  16. 16.

    Mori-Yoshimura M, Monma K, Suzuki N, Aoki M, Kumamoto T, Tanaka K, Tomimitsu H, Nakano S et al (2012) Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. J Neurol Sci 318(1-2):100–105. doi:10.1016/j.jns.2012.03.016

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Galeano B, Klootwijk R, Manoli I, Sun M, Ciccone C, Darvish D, Starost MF, Zerfas PM et al (2007) Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J Clin Invest 117(6):1585–1594. doi:10.1172/JCI30954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Eisenberg I, Grabov-Nardini G, Hochner H, Korner M, Sadeh M, Bertorini T, Bushby K, Castellan C et al (2003) Mutations spectrum of GNE in hereditary inclusion body myopathy sparing the quadriceps. Hum Mutat 21(1):99. doi:10.1002/humu.9100

    Article  PubMed  Google Scholar 

  19. 19.

    Tanboon J, Rongsa K, Pithukpakorn M, Boonyapisit K, Limwongse C, Sangruchi T (2014) A Novel Mutation of the GNE Gene in Distal Myopathy with Rimmed Vacuoles: a Case with Inflammation. Case Rep Neurol 6(1):55–59. doi:10.1159/000360730

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Nalini A, Gayathri N, Nishino I, Hayashi YK (2013) GNE myopathy in India. Neurol India 61(4):371–374. doi:10.4103/0028-3886.117609

    Article  PubMed  Google Scholar 

  21. 21.

    Huizing M, Carrillo-Carrasco N, Malicdan MC, Noguchi S, Gahl WA, Mitrani-Rosenbaum S, Argov Z, Nishino I (2014) GNE myopathy: new name and new mutation nomenclature. Neuromuscul Disord 24(5):387–389. doi:10.1016/j.nmd.2014.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Park YE, Kim HS, Choi ES, Shin JH, Kim SY, Son EH, Lee CH, Kim DS (2012) Limb-girdle phenotype is frequent in patients with myopathy associated with GNE mutations. J Neurol Sci 321(1-2):77–81. doi:10.1016/j.jns.2012.07.061

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Celeste FV, Vilboux T, Ciccone C, de Dios JK, Malicdan MC, Leoyklang P, McKew JC, Gahl WA et al (2014) Mutation Update for GNE Gene Variants Associated with GNE Myopathy. Hum Mutat 35(8):915–926. doi:10.1002/humu.22583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Cho A, Hayashi YK, Monma K, Oya Y, Noguchi S, Nonaka I, Nishino I (2014) Mutation profile of the GNE gene in Japanese patients with distal myopathy with rimmed vacuoles (GNE myopathy). J Neurol Neurosurg Psychiatry 85(8):914–917. doi:10.1136/jnnp-2013-305587

    Article  PubMed  Google Scholar 

  25. 25.

    Grover S, Arya R (2014) Role of UDP-N-Acetylglucosamine2-Epimerase/N-Acetylmannosamine Kinase (GNE) in beta1-Integrin-Mediated Cell Adhesion. Mol Neurobiol. doi:10.1007/s12035-013-8604-6

    PubMed  Google Scholar 

  26. 26.

    Amsili S, Zer H, Hinderlich S, Krause S, Becker-Cohen M, MacArthur DG, North KN, Mitrani-Rosenbaum S (2008) UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: novel pathways in skeletal muscle? PLoS One 3(6):e2477. doi:10.1371/journal.pone.0002477

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sela I, Milman Krentsis I, Shlomai Z, Sadeh M, Dabby R, Argov Z, Ben-Bassat H, Mitrani-Rosenbaum S (2011) The proteomic profile of hereditary inclusion body myopathy. PLoS One 6(1):e16334. doi:10.1371/journal.pone.0016334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Weidemann W, Stelzl U, Lisewski U, Bork K, Wanker EE, Hinderlich S, Horstkorte R (2006) The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Lett 580(28-29):6649–6654. doi:10.1016/j.febslet.2006.11.015

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Weidemann W, Klukas C, Klein A, Simm A, Schreiber F, Horstkorte R (2010) Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 20(1):107–117. doi:10.1093/glycob/cwp153

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wang Z, Sun Z, Li AV, Yarema KJ (2006) Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase outside of sialic acid biosynthesis: modulation of sialyltransferase and BiP expression, GM3 and GD3 biosynthesis, proliferation, and apoptosis, and ERK1/2 phosphorylation. J Biol Chem 281(37):27016–27028. doi:10.1074/jbc.M604903200

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Kemmner W, Kessel P, Sanchez-Ruderisch H, Moller H, Hinderlich S, Schlag PM, Detjen K (2012) Loss of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) induces apoptotic processes in pancreatic carcinoma cells. FASEB J 26(2):938–946. doi:10.1096/fj.11-186700

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106. doi:10.1146/annurev.biochem.73.011303.073706

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75. doi:10.1016/j.chemphyslip.2014.04.001

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Eisenberg I, Novershtern N, Itzhaki Z, Becker-Cohen M, Sadeh M, Willems PH, Friedman N, Koopman WJ et al (2008) Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum Mol Genet 17(23):3663–3674. doi:10.1093/hmg/ddn261

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Amsili S, Shlomai Z, Levitzki R, Krause S, Lochmuller H, Ben-Bassat H, Mitrani-Rosenbaum S (2007) Characterization of hereditary inclusion body myopathy myoblasts: possible primary impairment of apoptotic events. Cell Death Differ 14(11):1916–1924. doi:10.1038/sj.cdd.4402208

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Arabkhari M, Bunda S, Wang Y, Wang A, Pshezhetsky AV, Hinek A (2010) Desialylation of insulin receptors and IGF-1 receptors by neuraminidase-1 controls the net proliferative response of L6 myoblasts to insulin. Glycobiology 20(5):603–616. doi:10.1093/glycob/cwq010

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Gu J, Zhou S, Ding R, Aizezi W, Jiang A, Chen J (2013) Necrotizing scleritis and peripheral ulcerative keratitis associated with Wegener's granulomatosis. Ophthalmol Ther 2(2):99–111. doi:10.1007/s40123-013-0016-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wittmann S, Bali P, Donapaty S, Nimmanapalli R, Guo F, Yamaguchi H, Huang M, Jove R et al (2003) Flavopiridol down-regulates antiapoptotic proteins and sensitizes human breast cancer cells to epothilone B-induced apoptosis. Cancer Res 63(1):93–99

    CAS  PubMed  Google Scholar 

  39. 39.

    Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101(1):4–15

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Smith L, Wang Z, Smith JB (2003) Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein. Biochem J 375(Pt 3):663–671. doi:10.1042/BJ20030926

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Broccolini A, Mirabella M (2014) Hereditary inclusion-body myopathies. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.08.007

    PubMed  Google Scholar 

  42. 42.

    Li H, Chen Q, Liu F, Zhang X, Li W, Liu S, Zhao Y, Gong Y et al (2013) Unfolded protein response and activated degradative pathways regulation in GNE myopathy. PLoS One 8(3):e58116. doi:10.1371/journal.pone.0058116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Fischer C, Kleinschnitz K, Wrede A, Muth I, Kruse N, Nishino I, Schmidt J (2013) Cell stress molecules in the skeletal muscle of GNE myopathy. BMC Neurol 13:24. doi:10.1186/1471-2377-13-24

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007) A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16(22):2669–2682. doi:10.1093/hmg/ddm220

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I (2007) A Gne knockout mouse expressing human V572L mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16(2):115–128. doi:10.1093/hmg/ddl446

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15(6):690–695. doi:10.1038/nm.1956

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Schwarzkopf M, Knobeloch KP, Rohde E, Hinderlich S, Wiechens N, Lucka L, Horak I, Reutter W et al (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A 99(8):5267–5270. doi:10.1073/pnas.072066199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Daya A, Vatine GD, Becker-Cohen M, Tal-Goldberg T, Friedmann A, Gothilf Y, Du SJ, Mitrani-Rosenbaum S (2014) Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 23(13):3349–3361. doi:10.1093/hmg/ddu045

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Salama I, Hinderlich S, Shlomai Z, Eisenberg I, Krause S, Yarema K, Argov Z, Lochmuller H et al (2005) No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochem Biophys Res Commun 328(1):221–226. doi:10.1016/j.bbrc.2004.12.157

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Weidemann W, Reinhardt A, Thate A, Horstkorte R (2011) Biochemical characterization of the M712T-mutation of the UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosaminekinase in hereditary inclusion body myopathy. Neuromuscul Disord 21(12):824–831. doi:10.1016/j.nmd.2011.06.004

    Article  PubMed  Google Scholar 

  51. 51.

    Paccalet T, Coulombe Z, Tremblay JP (2010) Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 5(4):e10055. doi:10.1371/journal.pone.0010055

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bork K, Reutter W, Weidemann W, Horstkorte R (2007) Enhanced sialylation of EPO by overexpression of UDP-GlcNAc 2-epimerase/ManAc kinase containing a sialuria mutation in CHO cells. FEBS Lett 581(22):4195–4198. doi:10.1016/j.febslet.2007.07.060

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Kontou M, Weidemann W, Bork K, Horstkorte R (2009) Beyond glycosylation: sialic acid precursors act as signaling molecules and are involved in cellular control of differentiation of PC12 cells. Biol Chem 390(7):575–579. doi:10.1515/BC.2009.058

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811. doi:10.1038/sj.onc.1209608

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Filosto M, Scarpelli M, Cotelli MS, Vielmi V, Todeschini A, Gregorelli V, Tonin P, Tomelleri G et al (2011) The role of mitochondria in neurodegenerative diseases. J Neurol 258(10):1763–1774. doi:10.1007/s00415-011-6104-z

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, Yang SS, Lee JS et al (2014) Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis 5:e1056. doi:10.1038/cddis.2014.33

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Adhihetty PJ, O'Leary MF, Hood DA (2008) Mitochondria in skeletal muscle: adaptable rheostats of apoptotic susceptibility. Exerc Sport Sci Rev 36(3):116–121. doi:10.1097/JES.0b013e31817be7b7

    Article  PubMed  Google Scholar 

  58. 58.

    Reissig JL, Storminger JL, Leloir LF (1955) A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217(2):959–966

    CAS  PubMed  Google Scholar 

  59. 59.

    Hamann S, Metrailler S, Schorderet DF, Cottet S (2013) Analysis of the cytoprotective role of alpha-crystallins in cell survival and implication of the alphaA-crystallin C-terminal extension domain in preventing Bax-induced apoptosis. PLoS One 8(2):e55372. doi:10.1371/journal.pone.0055372

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Alok Bhattacharya (School of Life Sciences, Jawaharlal Nehru University, and New Delhi) for thoughtful discussions and progressive comments during the project. This work was supported by grants from the Indian Council of Medical Research, India and Council of Scientific and Industrial Research, Govt. of India. We acknowledge Mr. Ashok and Mr. Prabhat Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi, for technical assistance in confocal microscopy and live cell imaging. We acknowledge Dr. Anwar Alam and Mrs. Sarika (School of Life Sciences, Jawaharlal Nehru University, NewDelhi) for technical assistance in flow cytometry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranjana Arya.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Determination of DNA damage/nuclear fragmentation by TUNEL assay after supplementation with 5 mM NANA: Representative image of wtGNE and GNE mutants obtained by confocal microscopy, depicting DNA damage/nuclear fragmentation by TUNEL assay. Arrows indicate TUNEL-positive cells (green).The images were viewed using Olympus Fluoview FV1000 laser scan at 60 X magnification. (JPEG 85 kb)

Figure S2

Study of cell apoptosis by Annexin V-FITC/Propidium iodide staining after supplementation with 5 mM NANA: Annexin V-FITC and Propidium iodide staining of wtGNE and different GNE mutant cells were analyzed by flow cytometry after NANA supplementation. B.Graphical representation of fold changein apoptosis of various GNE mutant cells compared to wtGNE cell line. (JPEG 111 kb)

Figure S3

Effect of GNE mutation on mitochondrial dysfunction after 5 mM NANA supplementation: A. Effect of GNE mutation on dissipation of mitochondrial membrane potential (as measured by JC-1) using confocal microscopy, magnification 60 X. B. Histogram shows the ratio of red to green fluorescence intensity observed in various cell lines characterizing Δψ (m). (JPEG 145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Arya, R. GNE Myopathy and Cell Apoptosis: A Comparative Mutation Analysis. Mol Neurobiol 53, 3088–3101 (2016). https://doi.org/10.1007/s12035-015-9191-5

Download citation

Keywords

  • Hereditary inclusion body myopathy (HIBM)
  • GNE myopathy
  • Cell apoptosis
  • Sialic acid
  • Mitochondria
  • Proliferation