Advertisement

Molecular Neurobiology

, Volume 53, Issue 3, pp 2065–2081 | Cite as

Hippocampal Pruning as a New Theory of Schizophrenia Etiopathogenesis

  • Enrico Cocchi
  • Antonio Drago
  • Alessandro Serretti
Article

Abstract

Pruning in neurons has been suggested to be strongly involved in Schizophrenia’s (SKZ) etiopathogenesis in recent biological, imaging, and genetic studies. We investigated the impact of protein-coding genes known to be involved in pruning, collected by a systematic literature research, in shaping the risk for SKZ in a case–control sample of 9,490 subjects (Psychiatric Genomics Consortium). Moreover, their modifications through evolution (humans, chimpanzees, and rats) and subcellular localization (as indicative of their biological function) were also investigated. We also performed a biological pathways (Gene Ontology) analysis. Genetics analyses found four genes (DLG1, NOS1, THBS4, and FADS1) and 17 pathways strongly involved in pruning and SKZ in previous literature findings to be significantly associated with the sample under analysis. The analysis of the subcellular localization found that secreted genes, and so regulatory ones, are the least conserved through evolution and also the most associated with SKZ. Their cell line and regional brain expression analysis found that their areas of primary expression are neuropil and the hippocampus, respectively. At the best of our knowledge, for the first time, we were able to describe the SKZ neurodevelopmental hypothesis starting from a single biological process. We can also hypothesize how alterations in pruning fine regulation and orchestration, strongly related with the evolutionary newest (and so more sensitive) secreted proteins, may be of particular relevance in the hippocampus. This early alteration may lead to a mis-structuration of neural connectivity, resulting in the different brain alteration that characterizes SKZ patients.

Keywords

Schizophrenia Etiopathogenesis Pruning Genetics Molecular pathways Comparative genomics Gene set Enrichment analysis Evolutive genetics 

Notes

Acknowledgments

We thank the National Institute of Mental Health (NIMH) for having had the possibility of analyzing their Psychiatric Genomics Consortium data. We also thank the authors of previous publications in this dataset, and foremost, we thank the patients and their families. Information about the PGC project and supports can be found at https://www.nimhgenetics.org/available_data/data_biosamples/pgc_public.php.

Financial disclosures

Authors declare no conflict of interest.

Supplementary material

12035_2015_9174_MOESM1_ESM.pdf (93 kb)
Supplementary Table 1 (PDF 93 kb)
12035_2015_9174_MOESM2_ESM.pdf (89 kb)
Supplementary Table 2 (PDF 88 kb)
12035_2015_9174_MOESM3_ESM.pdf (54 kb)
Supplementary Table 3 (PDF 53 kb)
12035_2015_9174_MOESM4_ESM.pdf (2.5 mb)
Supplementary Table 4 (PDF 2537 kb)
12035_2015_9174_MOESM5_ESM.pdf (79 kb)
Supplementary Table 5 (PDF 79 kb)

References

  1. 1.
    Van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645. doi: 10.1016/S0140-6736(09)60995-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17:319–334CrossRefPubMedGoogle Scholar
  3. 3.
    Andreasen NC, Rezai K, Alliger R et al (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch Gen Psychiatry 49:943–958CrossRefPubMedGoogle Scholar
  4. 4.
    Pettegrew JW, Keshavan MS, Panchalingam K et al (1991) Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48:563–568CrossRefPubMedGoogle Scholar
  5. 5.
    Watson DR, Anderson JME, Bai F et al (2012) A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 227:91–99. doi: 10.1016/j.bbr.2011.10.034 CrossRefPubMedGoogle Scholar
  6. 6.
    Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245. doi: 10.1176/appi.ajp.162.12.2233 CrossRefPubMedGoogle Scholar
  7. 7.
    Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957. doi: 10.1038/nrn2513 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Keshavan MS, Anderson S, Pettegrew JW (1994) Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res 28:239–265CrossRefPubMedGoogle Scholar
  9. 9.
    Glausier JR, Lewis DA (2013) Dendritic spine pathology in schizophrenia. Neuroscience 251:90–107. doi: 10.1016/j.neuroscience.2012.04.044 CrossRefPubMedGoogle Scholar
  10. 10.
    Casey BJ, Jones RM, Hare TA (2008) The adolescent brain. Ann N Y Acad Sci 1124:111–126. doi: 10.1196/annals.1440.010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hayashi-Takagi A, Barker P, Arika S (2011) Readdressing synaptic pruning theory for schizophrenia: combination of brain imaging and cell biology. Commun Integr Biol 4:211–212. doi: 10.4161/cib.4.2.14492 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Faludi G, Mirnics K (2011) Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 29:305–309. doi: 10.1016/j.ijdevneu.2011.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kessler RC, Berglund P, Demler O et al (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62:593–602. doi: 10.1001/archpsyc.62.6.593 CrossRefPubMedGoogle Scholar
  14. 14.
    Munk-Jørgensen P (1987) First-admission rates and marital status of schizophrenics. Acta Psychiatr Scand 76:210–216CrossRefPubMedGoogle Scholar
  15. 15.
    Keshavan MS, Diwadkar VA, Montrose DM et al (2005) Premorbid indicators and risk for schizophrenia: a selective review and update. Schizophr Res 79:45–57. doi: 10.1016/j.schres.2005.07.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Maccabe JH (2008) Population-based cohort studies on premorbid cognitive function in schizophrenia. Epidemiol Rev 30:77–83. doi: 10.1093/epirev/mxn007 CrossRefPubMedGoogle Scholar
  17. 17.
    Blakemore S-J, Choudhury S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47:296–312. doi: 10.1111/j.1469-7610.2006.01611.x CrossRefPubMedGoogle Scholar
  18. 18.
    Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia. Ann N Y Acad Sci 1003:138–158. doi: 10.1196/annals.1300.063 CrossRefPubMedGoogle Scholar
  19. 19.
    Jones HM (2002) Dopamine and antipsychotic drug action revisited. Br J Psychiatry 181:271–275. doi: 10.1192/bjp.181.4.271 CrossRefPubMedGoogle Scholar
  20. 20.
    Nordström AL, Farde L, Wiesel FA et al (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33:227–235CrossRefPubMedGoogle Scholar
  21. 21.
    Elert E (2014) Aetiology: searching for schizophrenia’s roots. Nature 508:S2–S3. doi: 10.1038/508S2a CrossRefPubMedGoogle Scholar
  22. 22.
    Inan M, Petros TJ, Anderson SA (2013) Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia. Neurobiol Dis 53:36–48. doi: 10.1016/j.nbd.2012.11.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Nakazawa K, Zsiros V, Jiang Z et al (2012) GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62:1574–1583. doi: 10.1016/j.neuropharm.2011.01.022 CrossRefPubMedGoogle Scholar
  24. 24.
    Murray RM, Lewis SW (1987) Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed) 295:681–682CrossRefGoogle Scholar
  25. 25.
    Seeman P, Schwarz J, Chen J-F et al (2006) Psychosis pathways converge via D2 high dopamine receptors. Synapse 60:319–346. doi: 10.1002/syn.20303 CrossRefPubMedGoogle Scholar
  26. 26.
    Seeman P (2008) All psychotic roads lead to increased dopamine D2 high receptors: a perspective. Clin Schizophr Relat Psychoses 1:351–355. doi: 10.3371/CSRP.1.4.7 CrossRefGoogle Scholar
  27. 27.
    Thormodsen R, Rimol LM, Tamnes CK et al (2013) Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Res 214:190–196. doi: 10.1016/j.pscychresns.2013.07.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kubicki M, McCarley RW, Shenton ME (2005) Evidence for white matter abnormalities in schizophrenia. Curr Opin Psychiatry 18:121–134CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pantelis C, Velakoulis D, McGorry PD et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288. doi: 10.1016/S0140-6736(03)12323-9 CrossRefPubMedGoogle Scholar
  31. 31.
    DeLisi LE, Szulc KU, Bertisch HC et al (2006) Understanding structural brain changes in schizophrenia. Dialogues Clin Neurosci 8:71–78PubMedPubMedCentralGoogle Scholar
  32. 32.
    Garey LJ, Ong WY, Patel TS et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Selemon LD, Rajkowska G, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52:805–818, discussion 819–820 CrossRefPubMedGoogle Scholar
  34. 34.
    Purves D (2012) Neuroscience, 5th edn. Sinauer Associates, Sunderland, MAGoogle Scholar
  35. 35.
    Selemon LD, Goldman-Rakic PS (1999) The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 45:17–25CrossRefPubMedGoogle Scholar
  36. 36.
    Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 392:402–412CrossRefPubMedGoogle Scholar
  37. 37.
    Miyamoto S, Miyake N, Jarskog LF et al (2012) Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry 17:1206–1227. doi: 10.1038/mp.2012.47 CrossRefPubMedGoogle Scholar
  38. 38.
    Hou L, Zhao H (2013) A review of post-GWAS prioritization approaches. Front Genet 4:280. doi: 10.3389/fgene.2013.00280 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kendler KS, O’Donovan MC (2014) A breakthrough in schizophrenia genetics. JAMA Psychiatry 71:1319. doi: 10.1001/jamapsychiatry.2014.1776 CrossRefPubMedGoogle Scholar
  40. 40.
    Norrgard K (2008) Genetic variation and disease: GWAS. Nat Educ 87Google Scholar
  41. 41.
    Ersland KM, Christoforou A, Stansberg C et al (2012) Gene-based analysis of regionally enriched cortical genes in GWAS data sets of cognitive traits and psychiatric disorders. PLoS One 7, e31687. doi: 10.1371/journal.pone.0031687 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cocchi E, Drago A, Fabbri C, Serretti A (2014) A model to investigate SNPs’ interaction in GWAS studies. J Neural Transm Vienna Austria 1996. doi: 10.1007/s00702-014-1341-9 Google Scholar
  43. 43.
    Yu C-S, Chen Y-C, Lu C-H, Hwang J-K (2006) Prediction of protein subcellular localization. Proteins 64:643–651. doi: 10.1002/prot.21018 CrossRefPubMedGoogle Scholar
  44. 44.
    Cmielová J, Rezáčová M (2011) p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem 112:3502–3506. doi: 10.1002/jcb.23296 CrossRefPubMedGoogle Scholar
  45. 45.
    Scott MS, Calafell SJ, Thomas DY, Hallett MT (2005) Refining protein subcellular localization. PLoS Comput Biol 1, e66. doi: 10.1371/journal.pcbi.0010066 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2:2366–2382. doi: 10.1038/nprot.2007.324 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Montojo J, Zuberi K, Rodriguez H et al (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics (Oxford, England) 26:2927–2928. doi: 10.1093/bioinformatics/btq562 CrossRefGoogle Scholar
  48. 48.
    Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi: 10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198. doi: 10.1093/nar/gkt1140 CrossRefGoogle Scholar
  50. 50.
    De Magalhães JP, Church GM (2007) Analyses of human-chimpanzee orthologous gene pairs to explore evolutionary hypotheses of aging. Mech Ageing Dev 128:355–364. doi: 10.1016/j.mad.2007.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mularoni L, Ledda A, Toll-Riera M, Alba MM (2010) Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 20:745–754. doi: 10.1101/gr.101261.109 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  54. 54.
    Purwar S, Sundaram S, Sinha S et al (2013) Expression and in silico characterization of phenylalanine ammonium lyase against karnal bunt (Tilletia indica) in wheat (Triticum aestivum). Bioinformation 9:1013–1018. doi: 10.6026/97320630091013 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Díaz D, Esteban FJ, Hernández P et al (2014) MC64-ClustalWP2: a highly-parallel hybrid strategy to align multiple sequences in many-core architectures. PLoS One 9, e94044. doi: 10.1371/journal.pone.0094044 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Flores-Moreno K, Celis-Meneses JS, Meneses-Ruiz DM et al (2014) Potential cross-reactivity of monoclonal antibodies against clinically relevant mycobacteria. Clin Exp Immunol 177:454–463. doi: 10.1111/cei.12309 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhao L, Pu SS, Gao WH et al (2014) Effects of HIV-1 tat on secretion of TNF-α and IL-1β by U87 cells in AIDS patients with or without AIDS dementia complex. Biomed Environ Sci BES 27:111–117. doi: 10.3967/bes2014.024 PubMedGoogle Scholar
  58. 58.
    Pages H, Aboyoun P, Gentleman R, DebRoy S (2013) Biostrings: string objects representing biological sequences, and matching algorithmsGoogle Scholar
  59. 59.
    Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. doi: 10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Champely S (2012) pwr: basic functions for power analysisGoogle Scholar
  61. 61.
    McVean GA, Altshuler (Co-Chair) DM, Durbin (Co-Chair) RM, et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. doi:  10.1038/nature11632
  62. 62.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5, e1000529. doi: 10.1371/journal.pgen.1000529 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Drago A, Cocchi E, Crisafulli C, Serretti A (2014) A molecular pathway analysis of the glutamatergic–monoaminergic interplay serves to investigate the number of depressive records during citalopram treatment. J Neural Transm 122:465–475. doi: 10.1007/s00702-014-1267-2 CrossRefPubMedGoogle Scholar
  64. 64.
    Cocchi E (2014) Sulfur amino acid metabolic process pathway may modulate bipolar disorder with alcohol dependence comorbidity. J Addict Res Ther 5:177. doi: 10.4172/2155-6105.1000177 CrossRefGoogle Scholar
  65. 65.
    Abatangelo L, Maglietta R, Distaso A et al (2009) Comparative study of gene set enrichment methods. BMC Bioinf 10:275. doi: 10.1186/1471-2105-10-275 CrossRefGoogle Scholar
  66. 66.
    Tamayo P, Steinhardt G, Liberzon A, Mesirov JP (2012) The limitations of simple gene set enrichment analysis assuming gene independence. Stat Methods Med Res 2:96. doi: 10.1177/0962280212460441 Google Scholar
  67. 67.
    Fridley BL, Jenkins GD, Biernacka JM (2010) Self-contained gene-set analysis of expression data: an evaluation of existing and novel methods. PLoS One 5, e12693. doi: 10.1371/journal.pone.0012693 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Uhlen M, Oksvold P, Fagerberg L et al (2010) Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 28:1248–1250. doi: 10.1038/nbt1210-1248 CrossRefPubMedGoogle Scholar
  69. 69.
    Uhlen M (2005) A Human Protein Atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920–1932. doi: 10.1074/mcp.M500279-MCP200 CrossRefPubMedGoogle Scholar
  70. 70.
    Bohland JW, Wu C, Barbas H et al (2009) A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol 5, e1000334. doi: 10.1371/journal.pcbi.1000334 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Craig J (2008) Complex disease: research and applications. Nat Educ 184Google Scholar
  72. 72.
    Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553. doi: 10.1016/j.tins.2006.08.004 CrossRefPubMedGoogle Scholar
  73. 73.
    Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15:200–209. doi: 10.1016/j.tics.2011.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sebkova L, Pellicano A, Monteleone G et al (2014) Extracellular signal-regulated protein kinase mediates interleukin 17 (IL-17)-induced IL-8 secretion in Helicobacter pylori-infected human gastric epithelial cells. Infect Immun 82:2158. doi: 10.1128/IAI.00071-14 CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Müller-Pillasch F, Wallrapp C, Lacher U et al (1998) Identification of a new tumour-associated antigen TM4SF5 and its expression in human cancer. Gene 208:25–30CrossRefPubMedGoogle Scholar
  76. 76.
    Scheuer K, Maras A, Gattaz WF et al (1996) Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dement Basel Switz 7:210–214Google Scholar
  77. 77.
    Lucero HA, Ravid K, Grimsby JL et al (2008) Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J Biol Chem 283:24103–24117. doi: 10.1074/jbc.M709897200 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Li E, Hristova K (2006) Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry (Mosc) 45:6241–6251. doi: 10.1021/bi060609y CrossRefGoogle Scholar
  79. 79.
    Hammes SR (2003) The further redefining of steroid-mediated signaling. Proc Natl Acad Sci U S A 100:2168–2170. doi: 10.1073/pnas.0530224100 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rodnina MV, Beringer M, Wintermeyer W (2007) How ribosomes make peptide bonds. Trends Biochem Sci 32:20–26. doi: 10.1016/j.tibs.2006.11.007 CrossRefPubMedGoogle Scholar
  81. 81.
    Cech TR (2000) Structural biology. The ribosome is a ribozyme. Sciences 289:878–879CrossRefGoogle Scholar
  82. 82.
    Cooper G (2000) The cell: a molecular approach. Sinauer Associates, Sunderland, MAGoogle Scholar
  83. 83.
    Piomboni P, Focarelli R, Stendardi A et al (2012) The role of mitochondria in energy production for human sperm motility. Int J Androl 35:109–124. doi: 10.1111/j.1365-2605.2011.01218.x CrossRefPubMedGoogle Scholar
  84. 84.
    Dineley KE, Votyakova TV, Reynolds IJ (2003) Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration: zinc and energy production. J Neurochem 85:563–570. doi: 10.1046/j.1471-4159.2003.01678.x CrossRefPubMedGoogle Scholar
  85. 85.
    Custódio N, Carmo-Fonseca M (2001) Quality control of gene expression in the nucleus. J Cell Mol Med 5:267–275CrossRefPubMedGoogle Scholar
  86. 86.
    Garrenton LS, Braunwarth A, Irniger S et al (2009) Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Mol Cell Biol 29:582–601. doi: 10.1128/MCB.01019-08 CrossRefPubMedGoogle Scholar
  87. 87.
    Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5, e1000375. doi: 10.1371/journal.ppat.1000375 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hardt WD, Galán JE (1997) A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proc Natl Acad Sci U S A 94:9887–9892CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huppert LA, Ramsdell TL, Chase MR et al (2014) The ESX system in Bacillus subtilis mediates protein secretion. PLoS One 9, e96267. doi: 10.1371/journal.pone.0096267 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bernstein H-G, Steiner J, Bogerts B (2009) Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy. Expert Rev Neurother 9:1059–1071. doi: 10.1586/ern.09.59 CrossRefPubMedGoogle Scholar
  91. 91.
    Takahashi N, Sakurai T (2013) Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 53:49–60. doi: 10.1016/j.nbd.2012.11.001 CrossRefPubMedGoogle Scholar
  92. 92.
    Mitterauer BJ, Kofler-Westergren B (2011) Possible effects of synaptic imbalances on oligodendrocyte–axonic interactions in schizophrenia: a hypothetical model. Front Psychiatry 2:15. doi: 10.3389/fpsyt.2011.00015 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Deng C, Dean B (2013) Mapping the pathophysiology of schizophrenia: interactions between multiple cellular pathways. Front Cell Neurosci 7:238. doi: 10.3389/fncel.2013.00238 PubMedPubMedCentralGoogle Scholar
  94. 94.
    Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158CrossRefPubMedGoogle Scholar
  95. 95.
    Takahashi N, Ishihara R, Saito S et al (2006) Association between chromogranin A gene polymorphism and schizophrenia in the Japanese population. Schizophr Res 83:179–183. doi: 10.1016/j.schres.2005.12.854 CrossRefPubMedGoogle Scholar
  96. 96.
    Lin W-J, Salton SR (2013) The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms. Front Endocrinol 4:96. doi: 10.3389/fendo.2013.00096 CrossRefGoogle Scholar
  97. 97.
    Hattori K, Tanaka H, Wakabayashi C et al (2011) Expression of Ca2+-dependent activator protein for secretion 2 is increased in the brains of schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 35:1738–1743. doi: 10.1016/j.pnpbp.2011.05.004 CrossRefPubMedGoogle Scholar
  98. 98.
    Chechik G, Meilijson I, Ruppin E (1999) Neuronal regulation: a mechanism for synaptic pruning during brain maturation. Neural Comput 11:2061–2080. doi: 10.1162/089976699300016089 CrossRefPubMedGoogle Scholar
  99. 99.
    Vanderhaeghen P, Cheng H-J (2010) Guidance molecules in axon pruning and cell death. Cold Spring Harb Perspect Biol 2:a001859. doi: 10.1101/cshperspect.a001859 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Fischer M (1971) Psychoses in the offspring of schizophrenic monozygotic twins and their normal co-twins. Br J Psychiatry 118:43–52. doi: 10.1192/bjp.118.542.43 CrossRefPubMedGoogle Scholar
  101. 101.
    Gottesman II, Bertelsen A (1989) Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’s Danish identical and fraternal discordant twins. Arch Gen Psychiatry 46:867–872CrossRefPubMedGoogle Scholar
  102. 102.
    Girard F, Eichenberger S, Celio MR (2014) Thrombospondin 4 deficiency in mouse impairs neuronal migration in the early postnatal and adult brain. Mol Cell Neurosci 61:176–186. doi: 10.1016/j.mcn.2014.06.010 CrossRefPubMedGoogle Scholar
  103. 103.
    Waimey KE, Cheng H-J (2006) Axon pruning and synaptic development: how are they per-plexin? Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 12:398–409. doi: 10.1177/1073858406292631 Google Scholar
  104. 104.
    Bagri A, Cheng H-J, Yaron A et al (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113:285–299CrossRefPubMedGoogle Scholar
  105. 105.
    Oh S (1995) The generation of nitric oxide and its roles in neurotransmission and neurotoxicity. Keio J Med 44:53–61CrossRefPubMedGoogle Scholar
  106. 106.
    Kirilly D, Wong JJL, Lim EKH et al (2011) Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron 72:86–100. doi: 10.1016/j.neuron.2011.08.003 CrossRefPubMedGoogle Scholar
  107. 107.
    De la Torre-Ubieta L, Bonni A (2011) Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 72:22–40. doi: 10.1016/j.neuron.2011.09.018 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ducharme G, Lowe GC, Goutagny R, Williams S (2012) Early alterations in hippocampal circuitry and theta rhythm generation in a mouse model of prenatal infection: implications for schizophrenia. PLoS One 7, e29754. doi: 10.1371/journal.pone.0029754 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kühn S, Musso F, Mobascher A et al (2012) Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl Psychiatry 2, e127. doi: 10.1038/tp.2012.51 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Gao PP, Yue Y, Cerretti DP et al (1999) Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci U S A 96:4073–4077CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Benson DL, Tanaka H (1998) N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci Off J Soc Neurosci 18:6892–6904Google Scholar
  112. 112.
    Bagri A, Cheng H-J, Yaron A, et al (2003) Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113:285–299. doi:  10.1016/S0092-8674(03)00267-8
  113. 113.
    Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486CrossRefPubMedGoogle Scholar
  114. 114.
    Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 53:119–133PubMedGoogle Scholar
  115. 115.
    Carroll LS, Williams HJ, Walters J et al (2011) Mutation screening of the 3q29 microdeletion syndrome candidate genes DLG1 and PAK2 in schizophrenia. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 156B:844–849. doi: 10.1002/ajmg.b.31231 CrossRefGoogle Scholar
  116. 116.
    Hosak L (2013) New findings in the genetics of schizophrenia. World J Psychiatry 3:57–61. doi: 10.5498/wjp.v3.i3.57 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Mulle JG, Dodd AF, McGrath JA et al (2010) Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 87:229–236. doi: 10.1016/j.ajhg.2010.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lue RA, Marfatia SM, Branton D, Chishti AH (1994) Cloning and characterization of hDlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc Natl Acad Sci U S A 91:9818–9822CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ishidate T, Matsumine A, Toyoshima K, Akiyama T (2000) The APC–hDlg complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene 19:365–372. doi: 10.1038/sj.onc.1203309 CrossRefPubMedGoogle Scholar
  120. 120.
    Laprise P, Viel A, Rivard N (2004) Human homolog of disc-large is required for adherens junction assembly and differentiation of human intestinal epithelial cells. J Biol Chem 279:10157–10166. doi: 10.1074/jbc.M309843200 CrossRefPubMedGoogle Scholar
  121. 121.
    Sabio G, Cerezo-Guisado MI, Del Reino P et al (2010) p38gamma regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. J Cell Sci 123:2596–2604. doi: 10.1242/jcs.066514 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Prog Neurobiol 64:51–68CrossRefPubMedGoogle Scholar
  123. 123.
    Underhill SM, Wheeler DS, Amara SG (2015) Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J Neurosci Off J Soc Neurosci 35:5260–5270. doi: 10.1523/JNEUROSCI.4365-14.2015 CrossRefGoogle Scholar
  124. 124.
    Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Vincent SR (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90:246–255. doi: 10.1016/j.pneurobio.2009.10.007 CrossRefPubMedGoogle Scholar
  126. 126.
    Ong PK, Melchior B, Martins YC et al (2013) Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria. PLoS Pathog 9, e1003444. doi: 10.1371/journal.ppat.1003444 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Keilhoff G, Fansa H, Wolf G (2002) Differences in peripheral nerve degeneration/regeneration between wild-type and neuronal nitric oxide synthase knockout mice. J Neurosci Res 68:432–441. doi: 10.1002/jnr.10229 CrossRefPubMedGoogle Scholar
  128. 128.
    Wang J, Ma X, Xiang B et al (2012) Association study of NOS1 gene polymorphisms and schizophrenia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi Zhonghua Yixue Yichuanxue Zazhi Chin J Med Genet 29:459–463. doi: 10.3760/cma.j.issn.1003-9406.2012.04.018 Google Scholar
  129. 129.
    Rose EJ, Greene C, Kelly S et al (2012) The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. NeuroImage 60:614–622. doi: 10.1016/j.neuroimage.2011.12.054 CrossRefPubMedGoogle Scholar
  130. 130.
    Weber H, Klamer D, Freudenberg F et al (2014) The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 24:65–85. doi: 10.1016/j.euroneuro.2013.09.005 CrossRefGoogle Scholar
  131. 131.
    Wockner LF, Noble EP, Lawford BR et al (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl Psychiatry 4, e339. doi: 10.1038/tp.2013.111 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Thippeswamy T, Morris R (2001) Evidence that nitric oxide-induced synthesis of cGMP occurs in a paracrine but not an autocrine fashion and that the site of its release can be regulated: studies in dorsal root ganglia in vivo and in vitro. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 5:105–115. doi: 10.1006/niox.2001.0316 CrossRefGoogle Scholar
  133. 133.
    Sadvakassova G, Dobocan MC, Difalco MR, Congote LF (2009) Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity. J Cell Physiol 220:672–679. doi: 10.1002/jcp.21817 CrossRefPubMedGoogle Scholar
  134. 134.
    Lawler J (2000) The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 12:634–640CrossRefPubMedGoogle Scholar
  135. 135.
    Arber S, Caroni P (1995) Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 131:1083–1094CrossRefPubMedGoogle Scholar
  136. 136.
    Mumby SM, Raugi GJ, Bornstein P (1984) Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol 98:646–652CrossRefPubMedGoogle Scholar
  137. 137.
    Pantazopoulos H, Woo T-UW, Lim MP et al (2010) Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Arch Gen Psychiatry 67:155–166. doi: 10.1001/archgenpsychiatry.2009.196 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Park HJ, Kim SK, Kim JW et al (2012) Association of thrombospondin 1 gene with schizophrenia in Korean population. Mol Biol Rep 39:6875–6880. doi: 10.1007/s11033-012-1513-3 CrossRefPubMedGoogle Scholar
  139. 139.
    Leonard AE, Kelder B, Bobik EG et al (2000) cDNA cloning and characterization of human Delta5-desaturase involved in the biosynthesis of arachidonic acid. Biochem J 347(Pt 3):719–724CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Cho HP, Nakamura M, Clarke SD (1999) Cloning, expression, and fatty acid regulation of the human delta-5 desaturase. J Biol Chem 274:37335–37339CrossRefPubMedGoogle Scholar
  141. 141.
    da Cruz RP, Golombieski JI, Bazana MT et al (2010) Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice. Braz J Plant Physiol 22:199–207. doi: 10.1590/S1677-04202010000300007 CrossRefGoogle Scholar
  142. 142.
    Wieslander A, Christiansson A, Rilfors L, Lindblom G (1980) Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochem Mosc 19:3650–3655. doi: 10.1021/bi00557a002 CrossRefGoogle Scholar
  143. 143.
    Saugstad LF (2011) Infantile autism: a chronic psychosis since infancy due to synaptic pruning of the supplementary motor area. Nutr Health 20:171–182CrossRefPubMedGoogle Scholar
  144. 144.
    Laugharne JD, Mellor JE, Peet M (1996) Fatty acids and schizophrenia. Lipids 31(Suppl):S163–S165CrossRefPubMedGoogle Scholar
  145. 145.
    Ranjekar PK, Hinge A, Hegde MV et al (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122CrossRefPubMedGoogle Scholar
  146. 146.
    Arvindakshan M, Ghate M, Ranjekar PK et al (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204CrossRefPubMedGoogle Scholar
  147. 147.
    Emsley R, Oosthuizen P, van Rensburg SJ (2003) Clinical potential of omega-3 fatty acids in the treatment of schizophrenia. CNS Drugs 17:1081–1091CrossRefPubMedGoogle Scholar
  148. 148.
    Peet M (2003) Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot Essent FatAcids 69:477–485CrossRefGoogle Scholar
  149. 149.
    Fauser S, Smailhodzic D, Caramoy A et al (2011) Evaluation of serum lipid concentrations and genetic variants at high-density lipoprotein metabolism loci and TIMP3 in age-related macular degeneration. Invest Ophthalmol Vis Sci 52:5525–5528. doi: 10.1167/iovs.10-6827 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Enrico Cocchi
    • 1
  • Antonio Drago
    • 2
  • Alessandro Serretti
    • 1
    • 3
  1. 1.Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
  2. 2.IRCCS Centro S. Giovanni di DioBresciaItaly
  3. 3.Institute of PsychiatryUniversity of BolognaBolognaItaly

Personalised recommendations