Skip to main content

Advertisement

Log in

The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer’s Disease?

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gubbay J, Collignon J, Koopman P, Capel B et al (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245–250. doi:10.1038/346245a0

    Article  CAS  PubMed  Google Scholar 

  2. Sinclair AH, Berta P, Palmer MS, Hawkins JR et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244. doi:10.1038/346240a0

    Article  CAS  PubMed  Google Scholar 

  3. Dailey L, Yuan H, Basilico C (1994) Interaction between a novel F9-specific factor and octamer-binding proteins is required for cell-type-restricted activity of the fibroblast growth factor 4 enhancer. Mol Cell Biol 14:7758–7769. doi:10.1128/MCB.14.12.7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pan H, Schultz RM (2011) Sox2 modulates reprogramming of gene expression in two-cell mouse embryos. Biol Reprod 85:409–416. doi:10.1095/biolreprod.111.090886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406. doi:10.1146/annurev.cellbio.042308.113248

    Article  CAS  PubMed  Google Scholar 

  6. Ferri ALM, Cavallaro M, Braida D, Di Cristofano A et al (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–3819. doi:10.1242/dev.01204

    Article  CAS  PubMed  Google Scholar 

  7. Suh H, Consiglio A, Ray J, Sawai T et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528. doi:10.1016/j.stem.2007.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblasts cultures by defined factors. Cell 126:663–676. doi:10.1016/j. cell .2006.07.024

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi K, Tanabe K, Ohnuki M, Narita M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j. cell .2007.11.019

    Article  CAS  PubMed  Google Scholar 

  10. Sarkar A, Hochedlinger K (2013) The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12:15–30. doi:10.1016/j.stem.2012.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keramari M, Razavi J, Ingman KA, Patsch C et al (2010) Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 5:e13952. doi:10.1371/journal.pone.0013952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Avilion AA, Nicolis SK, Pevny LH, Perez L et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140. doi:10.1101/gad.224503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo G, Huss M, Tong GQ, Wang C et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685. doi:10.1016/j.devcel.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Masui S, Nakatake Y, Toyooka Y, Shimosato D et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635. doi:10.1038/ncb1589

    Article  CAS  PubMed  Google Scholar 

  15. Thomson M, Liu SJ, Zou LN, Smith Z et al (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145:875–889. doi:10.1016/j.cell.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  16. Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765. doi:10.1016/S0896-6273(03)00497-5

    Article  CAS  PubMed  Google Scholar 

  17. Li HY, Say EH, Zhou XF (2007) Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 25:2053–2065. doi:10.1634/stemcells. 2007-0080

    Article  CAS  PubMed  Google Scholar 

  18. Lagares A, Li HY, Zhou XF, Avendano C (2007) Primary sensory neuron addition in the adult rat trigeminal ganglion: evidence for neural crest glio-neuronal precursor maturation. J Neurosci 2730:7939–7953. doi:10.1523/JNEUROSCI. 1203-07.2007

    Article  CAS  Google Scholar 

  19. Kruger GM, Mosher JT, Bixby S, Joseph N et al (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35:657–669. doi:10.1016/S0896-6273(02)00827-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rask-Andersen H, Bostrom M, Gerdin B, Kinnefors A et al (2005) Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203:180–191. doi:10.1016/j.heares.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  21. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  22. Steiner B, Klempin F, Wang L, Kott M et al (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814. doi:10.1002/glia.20407

    Article  PubMed  Google Scholar 

  23. Ehninger D, Kempermann G (2008) Neurogenesis in the adult hippocampus. Cell Tissue Res 331:243–250. doi:10.1007/s00441-007-0478-3

    Article  PubMed  Google Scholar 

  24. Liu X, Bolteus AJ, Balkin DM, Henschel O et al (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54:394–410. doi:10.1002/glia.20392

    Article  PubMed  Google Scholar 

  25. Brill MS, Snapyan M, Wohlfrom H, Ninkovic J et al (2008) A dlx2- and pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. J Neurosci 28:6439–6452. doi:10.1523/JNEUROSCI. 0700-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hsieh J (2012) Orchestrating transcriptional control of adult neurogenesis. Genes Dev 26:1010–1021. doi:10.1101/gad.187336.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi:10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981

    Article  CAS  PubMed  Google Scholar 

  29. Remboutsika E, Elkouris M, Iulianella A, Andoniadou CL et al (2011) Flexibility of neural stem cells. Front Physiol 2:16. doi:10.3389/fphys.2011.00016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155. doi:10.1016/j.cell.2011.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cimadamore F, Fishwick K, Giusto E, Gnedeva K et al (2011) Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell 8:538–551. doi:10.1016/j.stem.2011.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366:64–73. doi:10.1016/j.ydbio.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  33. Heanue TA, Pachnis V (2011) Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells 29:128–140. doi:10.1002/stem.557

    Article  CAS  PubMed  Google Scholar 

  34. Gershon MD (2010) Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 33:446–456. doi:10.1016/j.tins.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Bondurand N, Natarajan D, Barlow A, Thapar N et al (2006) Maintenance of mammalian enteric nervous system progenitors by SOX10 and endothelin 3 signalling. Development 133:2075–2086. doi:10.1242/dev.02375

    Article  CAS  PubMed  Google Scholar 

  36. Metzger M, Bareiss PM, Danker T, Wagner S et al (2009) Expansion and differentiation of neural progenitors derived from the human adult enteric nervous system. Gastroenterology 137:2063–2073. doi:10.1053/j.gastro.2009.06.038

    Article  CAS  PubMed  Google Scholar 

  37. Hagedorn L, Suter U, Sommer L (1999) P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126:3781–3794

    CAS  PubMed  Google Scholar 

  38. Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728

    CAS  PubMed  Google Scholar 

  39. Marmigere F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8:114–127. doi:10.1038/nrn2057

    Article  CAS  PubMed  Google Scholar 

  40. Kramer I, Sigrist M, de Nooij JC, Taniuchi I et al (2006) A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49:379–393. doi:10.1016/j.neuron.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  41. Loh KM, Lim B (2011) A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8:363–369. doi:10.1016/j.stem.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  42. Boyer LA, Lee TI, Cole MF, Johnstone SE et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. doi:10.1016/j.cell.2005.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chickarmane V, Troein C, Nuber UA, Sauro HM et al (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2:e123. doi:10.1371/journal.pcbi.0020123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chen X, Xu H, Yuan P, Fang F et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117. doi:10.1016/j.cell.2008.04.043

    Article  CAS  PubMed  Google Scholar 

  45. Kim J, Chu J, Shen X, Wang J et al (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061. doi:10.1016/j.cell.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  46. Kopp JL, Ormsbee BD, Desler M, Rizzino A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26:903–911. doi:10.1634/stemcells. 2007-0951

    Article  CAS  PubMed  Google Scholar 

  47. Ormsbee Golden BD, Wuebben EL, Rizzino A (2013) Sox2 expression is regulated by a negative feedback loop in embryonic stem cells that involves AKT signaling and FoxO1. PLoS One 8:e76345. doi:10.1371/journal.pone.0076345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao Z, Cox JL, Gilmore JM, Ormsbee BD et al (2012) Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors. J Biol Chem 287:11384–11397. doi:10.1074/jbc.M111.320143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taranova OV, Magness ST, Fagan BM, Wu Y et al (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202. doi:10.1101/gad.1407906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fong YW, Inouye C, Yamaguchi T, Cattoglio C et al (2011) A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 147:120–131. doi:10.1016/j.cell.2011.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu N, Lu M, Tian X, Han Z (2007) Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol 211:279–286. doi:10.1002/jcp.20978

    Article  CAS  PubMed  Google Scholar 

  52. Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8:583–596. doi:10.1038/nrn2189

    Article  CAS  PubMed  Google Scholar 

  53. Wray J, Hartmann C (2012) WNTing embryonic stem cells. Trends Cell Biol 22:159–168. doi:10.1016/j.tcb.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  54. Qi X, Li TG, Hao J, Hu J et al (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 101:6027–6032. doi:10.1073/pnas.0401367101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122. doi:10.1038/nature08113

    Article  CAS  PubMed  Google Scholar 

  56. Nakatake Y, Fukui N, Iwamatsu Y, Masui S et al (2006) Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 26:7772–7782. doi:10.1128/MCB. 00468-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ravikumar B, Sarkar S, Davies JE, Futter M et al (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435. doi:10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  58. Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci 9:759–767. doi:10.1038/nrn2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peltier J, Conway A, Keung AJ, Schaffer DV (2011) Akt increases sox2 expression in adult hippocampal neural progenitor cells, but increased sox2 does not promote proliferation. Stem Cells Dev 20:1153–1161. doi:10.1089/scd.2010.0130

    Article  CAS  PubMed  Google Scholar 

  60. Jeong CH, Cho YY, Kim MO, Kim SH et al (2010) Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28:2141–2150. doi:10.1002/stem.540

    Article  CAS  PubMed  Google Scholar 

  61. Zhang X, Yalcin S, Lee DF, Yeh TY et al (2011) FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol 13:1092–1099. doi:10.1038/ncb2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paik JH, Ding Z, Narurkar R, Ramkissoon S et al (2009) FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 5:540–553. doi:10.1016/j.stem.2009.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer's disease. Exp Gerontol 48:647–653. doi:10.1016/j.exger.2013.02.025

    Article  CAS  Google Scholar 

  64. Hao J, Li TG, Qi X, Zhao DF et al (2006) WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev Biol 290:81–91. doi:10.1016/j.ydbio.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  65. Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T et al (2007) Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells 25:2827–2836. doi:10.1634/stemcells. 2007-0177

    Article  CAS  PubMed  Google Scholar 

  66. Lie DC, Colamarino SA, Song HJ, Desire L et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375. doi:10.1038/nature04108

    Article  CAS  PubMed  Google Scholar 

  67. Wang YZ, Yamagami T, Gan Q, Wang Y et al (2011) Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J Cell Sci 124:1553–1563. doi:10.1242/jcs.080580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seo E, Basu-Roy U, Zavadil J, Basilico C et al (2011) Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 31:4593–4608. doi:10.1128/MCB. 05798-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB et al (2012) Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 31:2270–2282. doi:10.1038/onc.2011.405

    Article  CAS  PubMed  Google Scholar 

  70. Agathocleous M, Iordanova I, Willardsen MI, Xue XY et al (2009) A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 136:3289–3299. doi:10.1242/dev.040451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kuwabara T, Hsieh J, Muotri A, Yeo G et al (2009) Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci 12:1097–1105. doi:10.1038/nn.2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L et al (2005) Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168:1065–1076. doi:10.1083/jcb.200409182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shimojo H, Ohtsuka T, Kageyama R (2011) Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci 5:78. doi:10.3389/fnins.2011.00078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Imayoshi I, Kageyama R (2011) The role of Notch signaling in adult neurogenesis. Mol Neurobiol 44:7–12. doi:10.1007/s12035-011-8186-0

    Article  CAS  PubMed  Google Scholar 

  75. Givogri MI, de Planell M, Galbiati F, Superchi D et al (2006) Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28:81–91. doi:10.1159/000090755

    Article  CAS  PubMed  Google Scholar 

  76. Sun F, Mao X, Xie L, Ding M et al (2013) Notch1 signaling modulates neuronal progenitor activity in the subventricular zone in response to aging and focal ischemia. Aging Cell 12:978–987. doi:10.1111/acel.12134

    Article  CAS  PubMed  Google Scholar 

  77. Guentchev M, McKay RD (2006) Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 23:2289–2296. doi:10.1111/j.1460-9568.2006.04766.x

    Article  PubMed  Google Scholar 

  78. Neves J, Parada C, Chamizo M, Giraldez F (2011) Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 138:735–744. doi:10.1242/dev.060657

    Article  CAS  PubMed  Google Scholar 

  79. Tomioka M, Nishimoto M, Miyagi S, Katayanagi T et al (2002) Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30:3202–3213. doi:10.1093/nar/gkf435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miyagi S, Saito T, Mizutani K, Masuyama N et al (2004) The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol Cell Biol 24:4207–4220. doi:10.1128/MCB. 24.10.4207-4220.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sikorska M, Sandhu JK, Deb-Rinker P, Jezierski A et al (2008) Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. J Neurosci Res 86:1680–1693. doi:10.1002/jnr.21635

    Article  CAS  PubMed  Google Scholar 

  82. Li H, Collado M, Villasante A, Matheu A et al (2012) p27(Kip1) directly represses Sox2 during embryonic stem cell differentiation. Cell Stem Cell 11:845–852. doi:10.1016/j.stem.2012.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lodato MA, Ng CW, Wamstad JA, Cheng AW et al (2013) SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state. PLoS Genet 9:e1003288. doi:10.1371/journal.pgen.1003288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42. doi:10.1038/nrg2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cox JL, Mallanna SK, Luo X, Rizzino A (2010) Sox2 uses multiple domains to associate with proteins present in Sox2-protein complexes. PLoS One 5:e15486. doi:10.1371/journal.pone.0015486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kidder BL, Palmer S (2012) HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res 40:2925–2939. doi:10.1093/nar/gkr1151

    Article  CAS  PubMed  Google Scholar 

  87. Baltus GA, Kowalski MP, Tutter AV, Kadam S (2009) A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J Biol Chem 284:6998–7006. doi:10.1074/jbc.M807670200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuroda T, Tada M, Kubota H, Kimura H et al (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25:2475–2485. doi:10.1128/MCB. 25.6.2475-2485.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mitsui K, Tokuzawa Y, Itoh H, Segawa K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642. doi:10.1016/S0092-8674(03)00393-3

    Article  CAS  PubMed  Google Scholar 

  90. Ma DK, Marchetto MC, Guo JU, Ming GL et al (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344. doi:10.1038/nn.2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814. doi:10.1038/nrm3230

    Article  CAS  PubMed  Google Scholar 

  92. Lee TI, Jenner RG, Boyer LA, Guenther MG et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313. doi:10.1016/j.cell.2006.02.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spivakov M, Fisher AG (2007) Epigenetic signatures of stem-cell identity. Nat Rev Genet 8:263–271. doi:10.1038/nrg2046

    Article  CAS  PubMed  Google Scholar 

  94. Pollina EA, Brunet A (2011) Epigenetic regulation of aging stem cells. Oncogene 30:3105–3126. doi:10.1038/onc.2011.45

    Article  CAS  PubMed  Google Scholar 

  95. Fasano CA, Dimos JT, Ivanova NB, Lowry N et al (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1:87–99. doi:10.1016/j.stem.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  96. He S, Iwashita T, Buchstaller J, Molofsky AV et al (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328:257–272. doi:10.1016/j.ydbio.2009.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Molofsky AV, He S, Bydon M, Morrison SJ et al (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437. doi:10.1101/gad.1299505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ et al (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19:1438–1443. doi:10.1101/gad.1299305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. doi:10.1038/nrm2868

    Article  CAS  PubMed  Google Scholar 

  100. Xu N, Papagiannakopoulos T, Pan G, Thomson JA et al (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137:647–658. doi:10.1016/j.cell.2009.02.038

    Article  CAS  PubMed  Google Scholar 

  101. Card DA, Hebbar PB, Li L, Trotter KW et al (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol 28:6426–6438. doi:10.1128/MCB. 00359-08

    Article  PubMed  CAS  Google Scholar 

  102. Barroso-delJesus A, Romero-Lopez C, Lucena-Aguilar G, Melen GJ et al (2008) Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 28:6609–6619. doi:10.1128/MCB. 00398-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S et al (2011) MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 6:e16617. doi:10.1371/journal.pone.0016617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tay Y, Zhang J, Thomson AM, Lim B et al (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128. doi:10.1038/nature07299

    Article  CAS  PubMed  Google Scholar 

  105. Szulwach KE, Li X, Smrt RD, Li Y et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141. doi:10.1083/jcb.200908151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Altman J (1962) Are new neurons formed in the brain of adult mammals? Science 135:1127–1128

    Article  CAS  PubMed  Google Scholar 

  107. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  108. Vadodaria KC, Gage FH (2014) Snapshot: Adult hippocampal neurogenesis. Cell 156:1114. doi:10.1016/j.cell.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  109. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601. doi:10.1016/j.neuron.2013.10.037

    Article  CAS  PubMed  Google Scholar 

  110. Bondolfi L, Ermini F, Long JM, Ingram DK et al (2004) Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging 25:333–340. doi:10.1016/S0197-4580(03)00083-6

    Article  CAS  PubMed  Google Scholar 

  111. McDonald HY, Wojtowicz JM (2005) Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 385:70–75. doi:10.1016/j.neulet.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  112. Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci U S A 104:17169–17173. doi:10.1073/pnas.0708228104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29:129–147. doi:10.1016/j.neurobiolaging.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  114. Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713. doi:10.1038/nrm2241

    Article  CAS  PubMed  Google Scholar 

  115. Ferron SR, Marques-Torrejon MA, Mira H, Flores I et al (2009) Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J Neurosci 29:14394–14407. doi:10.1523/JNEUROSCI. 3836-09.2009

    Article  CAS  PubMed  Google Scholar 

  116. Encinas JM, Michurina TV, Peunova N, Park JH et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579. doi:10.1016/j.stem.2011.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Artegiani B, Calegari F (2012) Age-related cognitive decline: can neural stem cells help us? Aging 4:176–186

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063. doi:10.1182/blood-2007-05-087759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Le Belle JE, Orozco NM, Paucar AA, Saxe JP et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71. doi:10.1016/j.stem.2010.11.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Walton NM, Shin R, Tajinda K, Heusner CL et al (2012) Adult neurogenesis transiently generates oxidative stress. PLoS One 7:e35264. doi:10.1371/journal.pone.0035264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McCord AM, Jamal M, Shankavaram UT, Lang FF et al (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7:489–497. doi:10.1158/1541-7786.MCR-08-0360

    Article  CAS  PubMed  Google Scholar 

  122. Shyh-Chang N, Daley GQ, Cantley LC (2013) Stem cell metabolism in tissue development and aging. Development 140:2535–2547. doi:10.1242/dev.091777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kloet DE, Burgering BM (2011) The PKB/FOXO switch in aging and cancer. Biochim Biophys Acta 1813:1926–1937. doi:10.1016/j.bbamcr.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  124. Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. BioEssays 24:1095–1109. doi:10.1002/bies.10191

    Article  CAS  PubMed  Google Scholar 

  125. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976. doi:10.1016/j.biocel.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  126. Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740. doi:10.1038/nrm2233

    Article  CAS  PubMed  Google Scholar 

  127. Reinhardt HC, Schumacher B (2012) The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 28:128–136. doi:10.1016/j.tig.2011.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Meletis K, Wirta V, Hede SM, Nister M et al (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369. doi:10.1242/dev.02208

    Article  CAS  PubMed  Google Scholar 

  129. Marques-Torrejon MA, Porlan E, Banito A, Gomez-Ibarlucea E et al (2013) Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12:88–100. doi:10.1016/j.stem.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  130. Li DM, Sun H (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A 95:15406–15411. doi:10.1073/pnas.95.26.15406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307. doi:10.1172/JCI22475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Molofsky AV, Slutsky SG, Joseph NM, He S et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. doi:10.1038/nature05091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Abdouh M, Chatoo W, El Hajjar J, David J et al (2012) Bmi1 is down-regulated in the aging brain and displays antioxidant and protective activities in neurons. Plos One 7:e31870. doi:10.1371/journal.pone.0031870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li H, Collado M, Villasante A, Strati K et al (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139. doi:10.1038/nature08290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bass AJ, Watanabe H, Mermel CH, Yu S et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242. doi:10.1038/ng.465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hussenet T, Dali S, Exinger J, Monga B et al (2010) SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 5:e8960. doi:10.1371/journal.pone.0008960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Ring KL, Tong LM, Balestra ME, Javier R et al (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11:100–109. doi:10.1016/j.stem.2012.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253. doi:10.1016/j.abb.2007.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cho YY, Kim DJ, Lee HS, Jeong CH et al (2013) Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells. PLoS One 8:e57172. doi:10.1371/journal.pone.0057172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Miranda CJ, Braun L, Jiang Y, Hester ME et al (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552. doi:10.1111/j.1474-9726.2012.00816.x

    Article  PubMed  PubMed Central  Google Scholar 

  141. Florian MC, Nattamai KJ, Dorr K, Marka G et al (2013) A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature 503:392–396. doi:10.1038/nature12631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Okamoto M, Inoue K, Iwamura H, Terashima K et al (2011) Reduction in paracrine Wnt3 factors during aging causes impaired adult neurogenesis. FASEB J 25:3570–3582. doi:10.1096/fj.11-184697

    Article  CAS  PubMed  Google Scholar 

  143. St Laurent G 3rd, Hammell N, McCaffrey TA (2010) A LINE-1 component to human aging: do LINE elements exact a longevity cost for evolutionary advantage? Mech Ageing Dev 131:299–305. doi:10.1016/j.mad.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  144. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131. doi:10.1038/nature08248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393. doi:10.1016/j.jmb.2006.01.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maxwell PH, Burhans WC, Curcio MJ (2011) Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci U S A 108:20376–20381. doi:10.1073/pnas.1100271108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wallace NA, Belancio VP, Deininger PL (2008) L1 mobile element expression causes multiple types of toxicity. Gene 419:75–81. doi:10.1016/j.gene.2008.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. De Strooper B (2010) Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 90:465–494. doi:10.1152/physrev.00023.2009

    Article  PubMed  CAS  Google Scholar 

  149. Wang H, Li R, Shen Y (2013) β-secretase: its biology as a therapeutic target in diseases. Trends Pharmacol Sci 34:215–225. doi:10.1016/j.tips.2013.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wolfe MS (2009) γ-secretase in biology and medicine. Semin Cell Dev Biol 20:219–224. doi:10.1016/j.semcdb.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  151. Vincent B, Checler F (2012) α-secretase in Alzheimer’s disease and beyond: mechanistic, regulation and function in the shedding of membrane proteins. Curr Alzheimer Res 9:140–156. doi:10.2174/156720512799361646

    Article  CAS  PubMed  Google Scholar 

  152. Jin K, Peel AL, Mao XO, Xie L et al (2004) Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A 101:343–347. doi:10.1073/pnas.2634794100

    Article  CAS  PubMed  Google Scholar 

  153. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. doi:10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang Q, Matsumoto Y, Shindo T, Miyake K et al (2006) Neural stem cells transplantation in cortex in a mouse model of Alzheimer's disease. J Med Investig 53:61–69. doi:10.2152/jmi.53.61

    Article  Google Scholar 

  155. Wu S, Sasaki A, Yoshimoto R, Kawahara Y et al (2008) Neural stem cells improve learning and memory in rats with Alzheimer's disease. Pathobiology 75:186–194. doi:10.1159/000124979

    Article  PubMed  Google Scholar 

  156. Moghadam FH, Alaie H, Karbalaie K, Tanhaei S et al (2009) Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78:59–68. doi:10.1016/j.diff.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  157. Park D, Lee HJ, Joo SS, Bae DK et al (2012) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234:521–526. doi:10.1016/j.expneurol.2011.12.040

    Article  CAS  PubMed  Google Scholar 

  158. Livesey FJ (2014) Human stem cell models of dementia. Hum Mol Genet 23:R35–R39. doi:10.1093/hmg/ddu302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Donovan MH, Yazdani U, Norris RD, Games D et al (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer's disease. J Comp Neurol 495:70–83197. doi:10.1002/cne.20840

    Article  PubMed  Google Scholar 

  160. Rodriguez JJ, Jones VC, Tabuchi M, Allan SM et al (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS One 3:e2935198. doi:10.1371/journal.pone.0002935

    Article  Google Scholar 

  161. Hamilton A, Holscher C (2012) The effect of ageing on neurogenesis and oxidative stress in the APP(swe)/PS1(deltaE9) mouse model of Alzheimer's disease. Brain Res 1449:83–93. doi:10.1016/j.brainres.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  162. Freude KK, Penjwini M, Davis JL, LaFerla FM et al (2011) Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells. J Biol Chem 286:24264–24274. doi:10.1074/jbc.M111.227421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Young-Pearse TL, Suth S, Luth ES, Sawa A et al (2010) Biochemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development. J Neurosci 30:10431–10440. doi:10.1523/JNEUROSCI. 1445-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shariati SA, Lau P, Hassan BA, Muller U et al (2013) APLP2 regulates neuronal stem cell differentiation during cortical development. J Cell Sci 126:1268–1277. doi:10.1242/jcs.122440

    Article  CAS  PubMed  Google Scholar 

  165. Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL et al (2009) Differential processing of amyloid-β precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem 284:23806–23817. doi:10.1074/jbc.M109.026328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lopez-Toledano MA, Shelanski ML (2004) Neurogenic effects of β-amyloid peptide in the development of neural stem cells. J Neurosci 24:5439–5444. doi:10.1523/JNEUROSCI. 0974-04.2004

    Article  CAS  PubMed  Google Scholar 

  167. Zhang C, McNeil E, Dressler L, Siman R (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer's disease. Exp Neurol 204:77–87. doi:10.1016/j.expneurol.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  168. He P, Shen Y (2009) Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer's disease. J Neurosci 29:6545–6557. doi:10.1523/JNEUROSCI. 0421-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Caille I, Allinquant B, Dupont E, Bouillot C et al (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131:2173–2181. doi:10.1242/dev.01103

    Article  CAS  PubMed  Google Scholar 

  170. Baratchi S, Evans J, Tate WP, Abraham WC et al (2012) Secreted amyloid precursor proteins promote proliferation and glial differentiation of adult hippocampal neural progenitor cells. Hippocampus 22:1517–1527. doi:10.1002/hipo.20988

    Article  CAS  PubMed  Google Scholar 

  171. Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW et al (2008) Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 28:871–882. doi:10.1111/j.1460-9568.2008.06398.x

    Article  PubMed  Google Scholar 

  172. Ghosal K, Stathopoulos A, Pimplikar SW (2010) APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One 5:e11866. doi:10.1371/journal.pone.0011866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Apostolova LG, Green AE, Babakchanian S, Hwang KS et al (2012) Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Dis Assoc Disord 26:17–27. doi:10.1097/WAD.0b013e3182163b62

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hu X, He W, Luo X, Tsubota KE et al (2013) BACE1 regulates hippocampal astrogenesis via the Jagged1-Notch pathway. Cell Rep 4:40–49. doi:10.1016/j.celrep.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305–312. doi:10.1016/j.neuroscience.2004.03.048

    Article  CAS  PubMed  Google Scholar 

  176. Wen PH, Hof PR, Chen X, Gluck K et al (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237. doi:10.1016/j.expneurol.2004.04.002

    Article  CAS  PubMed  Google Scholar 

  177. Choi SH, Veeraraghavalu K, Lazarov O, Marler S et al (2008) Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. Neuron 59:568–580. doi:10.1016/j.neuron.2008.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Veeraraghavalu K, Sisodia SS (2013) Mutant presenilin 1 expression in excitatory neurons impairs enrichment-mediated phenotypes of adult hippocampal progenitor cells. Proc Natl Acad Sci U S A 110:9148–9153. doi:10.1073/pnas.1302106110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ma Z, Li Q, Zhang Z, Zheng Y (2013) A disintegrin and metalloprotease 10 in neuronal maturation and gliogenesis during cortex development. Neural Regen Res 8:24–30. doi:10.3969/j.issn. 1673-5374.2013.01.003

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Katakowski M, Chen J, Zhang ZG, Santra M et al (2007) Stroke-induced subventricular zone proliferation is promoted by tumor necrosis factor-α-converting enzyme protease activity. J Cereb Blood Flow Metab 27:669–678. doi:10.1038/sj.jcbfm.9600390

    Article  CAS  PubMed  Google Scholar 

  181. Chen X, Chen L, Zhang R, Yi Y et al (2013) ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells. Neurosci Lett 537:44–49. doi:10.1016/j.neulet.2013.01.021

    Article  CAS  PubMed  Google Scholar 

  182. Crews L, Adame A, Patrick C, Delaney A et al (2010) Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 30:12252–12262. doi:10.1523/JNEUROSCI. 1305-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Griffin RJ, Moloney A, Kelliher M, Johnston JA et al (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer's disease pathology. J Neurochem 93:105–117. doi:10.1111/j.1471-4159.2004.02949.x

    Article  CAS  PubMed  Google Scholar 

  184. Aoyagi N, Uemura K, Kuzuya A, Kihara T et al (2010) PI3K inhibition causes the accumulation of ubiquitinated presenilin 1 without affecting the proteasome activity. Biochem Biophys Res Commun 391:1240–1245. doi:10.1016/j.bbrc.2009.12.051

    Article  CAS  PubMed  Google Scholar 

  185. Moloney AM, Griffin RJ, Timmons S, O'Connor R et al (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243. doi:10.1016/j.neurobiolaging.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  186. Talbot K, Wang HY, Kazi H, Han LY et al (2012) Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338. doi:10.1172/JCI59903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 423:435–439. doi:10.1038/nature01640

    Article  CAS  PubMed  Google Scholar 

  188. Chevallier NL, Soriano S, Kang DE, Masliah E et al (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation. Am J Pathol 167:151–159. doi:10.1016/S0002-9440(10)62962-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH et al (2004) Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 297:186–196. doi:10.1016/j.yexcr.2004.02.028

    Article  CAS  PubMed  Google Scholar 

  190. Silva-Alvarez C, Arrazola MS, Godoy JA, Ordenes D et al (2013) Canonical Wnt signaling protects hippocampal neurons from Abeta oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics. Front Cell Neurosci 7:97. doi:10.3389/fncel.2013.00097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Inestrosa NC, Toledo EM (2008) The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Mol Neurodegener 3:9. doi:10.1186/1750-1326-3-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Cerpa W, Farias GG, Godoy JA, Fuenzalida M et al (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3. doi:10.1186/1750-1326-5-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Kopan R, Goate A (2000) A common enzyme connects notch signaling and Alzheimer's disease. Genes Dev 14:2799–2806. doi:10.1101/gad.836900

    Article  CAS  PubMed  Google Scholar 

  194. Kim SY, Kim MY, Mo JS, Park HS (2007) Notch1 intracellular domain suppresses APP intracellular domain-Tip60-Fe65 complex mediated signaling through physical interaction. Biochim Biophys Acta 1773:736–746. doi:10.1016/j.bbamcr.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  195. Ma QH, Futagawa T, Yang WL, Jiang XD et al (2008) A TAG1-APP signalling pathway through Fe65 negatively modulates neurogenesis. Nat Cell Biol 10:283–294. doi:10.1038/ncb1690

    Article  CAS  PubMed  Google Scholar 

  196. Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer's disease in transgenic mice. J Neurosci Res 88:2103–2117. doi:10.1002/jnr.22387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33:491–504. doi:10.1111/neup.12020

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarlak, G., Vincent, B. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer’s Disease?. Mol Neurobiol 53, 1679–1698 (2016). https://doi.org/10.1007/s12035-015-9123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9123-4

Keywords

Navigation