Skip to main content

Advertisement

Log in

Absence of CCL2 and CCL3 Ameliorates Central Nervous System Grey Matter But Not White Matter Demyelination in the Presence of an Intact Blood–Brain Barrier

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A broad spectrum of diseases is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation, among multiple sclerosis (MS). Our knowledge regarding the factors triggering gliosis and demyelination is scanty. Chemokines are pivotal for microglia and astrocyte activation and orchestrate critical steps during the formation of central nervous system (CNS) demyelinating lesions. Redundant functions of chemokines complicate, however, the study of their functional relevance. We used the cuprizone model to study redundant functions of two chemokines, CCL2/MCP1 and CCL3/MIP1α, which are critically involved in the pathological process of cuprizone-induced demyelination. First, we generated a mutant mouse strain lacking functional genes of both chemokines and demonstrated that double-mutant animals are viable, fertile, and do not present with gross abnormalities. Astrocytes and peritoneal macrophages, cultured form tissues of these animals did neither express CCL2 nor CCL3. Exposure to cuprizone resulted in increased CCL2 and CCL3 brain levels in wild-type but not mutant animals. Cuprizone-induced demyelination, oligodendrocyte loss, and astrogliosis were significantly ameliorated in the cortex but not corpus callosum of chemokine-deficient animals. In summary, we provide a novel powerful model to study the redundant function of two important chemokines. Our study reveals that chemokine function in the CNS redounds to region-specific pathophysiological events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26:2–10

    Article  PubMed  Google Scholar 

  2. Lassmann H (2005) Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 15:217–222

    Article  PubMed  Google Scholar 

  3. Kabat EA, Wolf A, Bezer AE (1946) Rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of brain tissue with adjuvants. Science 104:362–363. doi:10.1126/science.104.2703.362

    Article  Google Scholar 

  4. Lorentzen JC et al (1995) Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. J Neuroimmunol 63:193–205

    Article  CAS  PubMed  Google Scholar 

  5. van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11:570–588

    Article  PubMed  Google Scholar 

  6. Corthals AP (2011) Multiple sclerosis is not a disease of the immune system. Q Rev Biol 86:287–321

    Article  PubMed  Google Scholar 

  7. Nakahara J, Aiso S, Suzuki N (2010) Autoimmune versus oligodendrogliopathy: the pathogenesis of multiple sclerosis. Arch Immunol Ther Exp (Warsz) 58:325–333. doi:10.1007/s00005-010-0094-x

    Article  CAS  Google Scholar 

  8. Nakahara J, Maeda M, Aiso S, Suzuki N (2012) Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin Rev Allergy Immunol 42:26–34. doi:10.1007/s12016-011-8287-6

    Article  CAS  PubMed  Google Scholar 

  9. Stys PK (2013) Pathoetiology of multiple sclerosis: are we barking up the wrong tree? F1000Prime Rep 5:20. doi:10.12703/P5-20

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468. doi:10.1002/ana.20016

    Article  PubMed  Google Scholar 

  11. Gay FW, Drye TJ, Dick GW, Esiri MM (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain J Neurol 120(Pt 8):1461–1483

    Article  Google Scholar 

  12. Lassmann H (2003) Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci 206:187–191

    Article  CAS  PubMed  Google Scholar 

  13. Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815. doi:10.1093/brain/awm236

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prineas JW et al (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646–657

    Article  CAS  PubMed  Google Scholar 

  15. Sanders V, Conrad AJ, Tourtellotte WW (1993) On classification of post-mortem multiple sclerosis plaques for neuroscientists. J Neuroimmunol 46:207–216

    Article  CAS  PubMed  Google Scholar 

  16. van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213. doi:10.1097/WCO.0b013e32832b4c76

    PubMed  Google Scholar 

  17. Li H, Newcombe J, Groome NP, Cuzner ML (1993) Characterization and distribution of phagocytic macrophages in multiple sclerosis plaques. Neuropathol Appl Neurobiol 19:214–223

    Article  CAS  PubMed  Google Scholar 

  18. Kuhlmann T, Lucchinetti C, Zettl UK, Bitsch A, Lassmann H, Bruck W (1999) Bcl-2-expressing oligodendrocytes in multiple sclerosis lesions. Glia 28:34–39. doi:10.1002/(SICI)1098-1136(199910)28:1<34::AID-GLIA4>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  19. Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118:723–736. doi:10.1007/s00401-009-0591-3

    Article  PubMed  Google Scholar 

  20. Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26:1585–1597

    CAS  PubMed  Google Scholar 

  21. Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci MN 48:66–76. doi:10.1007/s12031-012-9773-x

    Article  CAS  PubMed  Google Scholar 

  22. Gudi V et al (2009) Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res 1283:127–138. doi:10.1016/j.brainres.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  23. Kipp M et al (2011) The hippocampal fimbria of cuprizone-treated animals as a structure for studying neuroprotection in multiple sclerosis. Inflamm Res 60:723–726. doi:10.1007/s00011-011-0339-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392:565–568. doi:10.1038/33340

    Article  CAS  PubMed  Google Scholar 

  25. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621. doi:10.1056/NEJMra052723

    Article  CAS  PubMed  Google Scholar 

  26. Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445. doi:10.1056/NEJM199802123380706

    Article  CAS  PubMed  Google Scholar 

  27. Ubogu EE, Cossoy MB, Ransohoff RM (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol Sci 27:48–55. doi:10.1016/j.tips.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez EJ, Lolis E (2002) Structure, function, and inhibition of chemokines. Ann Rev Pharmacol Toxicol 42:469–499. doi:10.1146/annurev.pharmtox.42.091901.11583842/1/469

    Article  CAS  Google Scholar 

  29. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242. doi:10.1146/annurev.immunol.18.1.217

    Article  CAS  PubMed  Google Scholar 

  30. Laing KJ, Secombes CJ (2004) Chemokines. Dev Comp Immunol 28:443–460. doi:10.1016/j.dci.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  31. Murphy PM (2002) International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229

    Article  CAS  PubMed  Google Scholar 

  32. Mackay CR (2001) Chemokines: immunology's high impact factors. Nat Immunol 2:95–101. doi:10.1038/84298

    Article  CAS  PubMed  Google Scholar 

  33. Andjelkovic AV, Song L, Dzenko KA, Cong H, Pachter JS (2002) Functional expression of CCR2 by human fetal astrocytes. J Neurosci Res 70:219–231. doi:10.1002/jnr.10372

    Article  CAS  PubMed  Google Scholar 

  34. Biber K, Dijkstra I, Trebst C, De Groot CJ, Ransohoff RM, Boddeke HW (2002) Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience 112:487–497

    Article  CAS  PubMed  Google Scholar 

  35. Grizenkova J, Akhtar S, Brandner S, Collinge J, Lloyd SE (2014) Microglial Cx3cr1 knockout reduces prion disease incubation time in mice. BMC Neurosci 15:44. doi:10.1186/1471-2202-15-44

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heesen M et al (1996) Mouse astrocytes respond to the chemokines MCP-1 and KC, but reverse transcriptase-polymerase chain reaction does not detect mRNA for the KC or new MCP-1 receptor. J Neurosci Res 45:382–391. doi:10.1002/(SICI)1097-4547(19960815)45:4<382::AID-JNR7>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  37. McMillin M et al (2014) Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline. J Neuroinflammation 11:121. doi:10.1186/1742-2094-11-121

    Article  PubMed  PubMed Central  Google Scholar 

  38. Odemis V, Moepps B, Gierschik P, Engele J (2002) Interleukin-6 and cAMP induce stromal cell-derived factor-1 chemotaxis in astroglia by up-regulating CXCR4 cell surface expression. Implications for Brain Inflammation. J Biol Chem 277:39801–39808. doi:10.1074/jbc.M200472200

    Article  PubMed  Google Scholar 

  39. Tanabe S et al (1997) Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol 159:905–911

    CAS  PubMed  Google Scholar 

  40. Glabinski AR, Ransohoff RM (1999) Chemokines and chemokine receptors in CNS pathology. J Neurovirol 5:3–12

    Article  CAS  PubMed  Google Scholar 

  41. McMahon EJ, Cook DN, Suzuki K, Matsushima GK (2001) Absence of macrophage-inflammatory protein-1alpha delays central nervous system demyelination in the presence of an intact blood-brain barrier. J Immunol 167:2964–2971

    Article  CAS  PubMed  Google Scholar 

  42. Henkel JS et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235. doi:10.1002/ana.10805

    Article  CAS  PubMed  Google Scholar 

  43. Nash KR et al (2013) Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol Aging 34:1540–1548. doi:10.1016/j.neurobiolaging.2012.12.011

    Article  CAS  PubMed  Google Scholar 

  44. Asevedo E et al (2013) Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J Psychiatr Res 47:1376–1382. doi:10.1016/j.jpsychires.2013.05.032

    Article  PubMed  Google Scholar 

  45. Krauthausen M, Saxe S, Zimmermann J, Emrich M, Heneka MT, Muller M (2014) CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J Neuroinflammation 11:109. doi:10.1186/1742-2094-11-109

    Article  PubMed  PubMed Central  Google Scholar 

  46. Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A 107:11062–11067. doi:10.1073/pnas.1006301107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel JR et al (2012) Astrocyte TNFR2 is required for CXCL12-mediated regulation of oligodendrocyte progenitor proliferation and differentiation within the adult CNS. Acta Neuropathol 124:847–860. doi:10.1007/s00401-012-1034-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Skripuletz T et al (2013) Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain J Neurol 136:147–167. doi:10.1093/brain/aws262

    Article  Google Scholar 

  49. Acs P et al (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814. doi:10.1002/glia.20806

    Article  PubMed  Google Scholar 

  50. Groebe A, Clarner T, Baumgartner W, Dang J, Beyer C, Kipp M (2009) Cuprizone treatment induces distinct demyelination, astrocytosis, and microglia cell invasion or proliferation in the mouse cerebellum. Cerebellum 8:163–174. doi:10.1007/s12311-009-0099-3

    Article  CAS  PubMed  Google Scholar 

  51. Kipp M et al (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci MN 35:235–243. doi:10.1007/s12031-008-9057-7

    Article  CAS  PubMed  Google Scholar 

  52. Clarner T, Parabucki A, Beyer C, Kipp M (2011) Corticosteroids impair remyelination in the corpus callosum of cuprizone-treated mice. J Neuroendocrinol 23:601–611. doi:10.1111/j.1365-2826.2011.02140.x

    Article  CAS  PubMed  Google Scholar 

  53. Kipp M et al (2011) Brain lipid binding protein (FABP7) as modulator of astrocyte function. Physiol Res 60(Suppl 1):S49–S60

    CAS  PubMed  Google Scholar 

  54. Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M (2015) The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol 172:80–92. doi:10.1111/bph.12938

    Article  CAS  PubMed  Google Scholar 

  55. Braun A, Dang J, Johann S, Beyer C, Kipp M (2009) Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int 55:610–618. doi:10.1016/j.neuint.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  56. Kipp M et al (2011) BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain Behav Immun 25:1554–1568. doi:10.1016/j.bbi.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  57. Cook DN et al (1995) Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science 269:1583–1585

    Article  CAS  PubMed  Google Scholar 

  58. Lu B et al (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clarner T et al (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60:1468–1480. doi:10.1002/glia.22367

    Article  PubMed  Google Scholar 

  60. Skripuletz T et al (2008) Cortical demyelination is prominent in the murine cuprizone model and is strain-dependent. Am J Pathol 172:1053–1061. doi:10.2353/ajpath.2008.070850

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu L et al (2010) CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nat Neurosci 13:319–326. doi:10.1038/nn.2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218. doi:10.1111/j.1750-3639.2007.00064.x

    Article  PubMed  Google Scholar 

  63. Ludwin SK, Johnson ES (1981) Evidence for a "dying-back" gliopathy in demyelinating disease. Ann Neurol 9:301–305. doi:10.1002/ana.410090316

    Article  CAS  PubMed  Google Scholar 

  64. Krauspe BM et al (2014) Short-Term Cuprizone Feeding Verifies N-Acetylaspartate Quantification as a Marker of Neurodegeneration. J Mol Neurosci MN. doi:10.1007/s12031-014-0412-6

    Google Scholar 

  65. Hesse A et al (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37:362–369. doi:10.1016/j.nbd.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  66. Remington LT, Babcock AA, Zehntner SP, Owens T (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724. doi:10.2353/ajpath.2007.060783

    Article  PubMed  PubMed Central  Google Scholar 

  67. Biancotti JC, Kumar S, de Vellis J (2008) Activation of inflammatory response by a combination of growth factors in cuprizone-induced demyelinated brain leads to myelin repair. Neurochem Res 33:2615–2628. doi:10.1007/s11064-008-9792-8

    Article  CAS  PubMed  Google Scholar 

  68. Yao Y, Tsirka SE (2014) Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol Life Sci CMLS 71:683–697. doi:10.1007/s00018-013-1459-1

    Article  CAS  PubMed  Google Scholar 

  69. Szczucinski A, Losy J (2007) Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 115:137–146. doi:10.1111/j.1600-0404.2006.00749.x

    Article  CAS  PubMed  Google Scholar 

  70. Charo IF (1999) CCR2: from cloning to the creation of knockout mice. Chem Immunol 72:30–41

    Article  CAS  PubMed  Google Scholar 

  71. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193:713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 192:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaupp S, Pitt D, Kuziel WA, Cannella B, Raine CS (2003) Experimental autoimmune encephalomyelitis (EAE) in CCR2(−/−) mice: susceptibility in multiple strains. Am J Pathol 162:139–150. doi:10.1016/s0002-9440(10)63805-9

    Article  PubMed  PubMed Central  Google Scholar 

  74. Izikson L, Klein RS, Charo IF, Weiner HL, Luster AD (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J Exp Med 192:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ (1995) Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med 182:1169–1174

    Article  CAS  PubMed  Google Scholar 

  76. Tran EH, Kuziel WA, Owens T (2000) Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur J Immunol 30:1410–1415. doi:10.1002/(sici)1521-4141(200005)30:5<1410::aid-immu1410>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  77. Karpus WJ, Kennedy KJ (1997) MIP-1alpha and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J Leukoc Biol 62:681–687

    CAS  PubMed  Google Scholar 

  78. Manczak M, Jiang S, Orzechowska B, Adamus G (2002) Crucial role of CCL3/MIP-1alpha in the recurrence of autoimmune anterior uveitis induced with myelin basic protein in Lewis rats. J Autoimmun 18:259–270

    Article  PubMed  Google Scholar 

  79. Cross AK, Woodroofe MN (1999) Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res 55:17–23

    Article  CAS  PubMed  Google Scholar 

  80. Cudaback E, Yang Y, Montine TJ, Keene CD (2014) APOE genotype-dependent modulation of astrocyte chemokine CCL3 production. Glia. doi:10.1002/glia.22732

    PubMed  PubMed Central  Google Scholar 

  81. El-Hage N et al (2006) HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53:132–146. doi:10.1002/glia.20262

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hinojosa AE, Garcia-Bueno B, Leza JC, Madrigal JL (2011) CCL2/MCP-1 modulation of microglial activation and proliferation. J Neuroinflammation 8:77. doi:10.1186/1742-2094-8-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang HK et al (2008) Free radical production in CA1 neurons induces MIP-1alpha expression, microglia recruitment, and delayed neuronal death after transient forebrain ischemia. J Neurosci Off J Soc Neurosci 28:1721–1727. doi:10.1523/jneurosci.4973-07.2008

    Article  CAS  Google Scholar 

  84. Yang G et al (2011) Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 21:279–297. doi:10.1111/j.1750-3639.2010.00445.x

    Article  CAS  PubMed  Google Scholar 

  85. Han Y, Wang J, Zhou Z, Ransohoff RM (2000) TGFbeta1 selectively up-regulates CCR1 expression in primary murine astrocytes. Glia 30:1–10

    Article  CAS  PubMed  Google Scholar 

  86. Quinones MP et al (2008) Role of astrocytes and chemokine systems in acute TNFalpha induced demyelinating syndrome: CCR2-dependent signals promote astrocyte activation and survival via NF-kappaB and Akt. Mol Cell Neurosci 37:96–109. doi:10.1016/j.mcn.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  87. Lee YK et al (2009) CCR5 deficiency induces astrocyte activation, Abeta deposit and impaired memory function. Neurobiol Learn Mem 92:356–363. doi:10.1016/j.nlm.2009.04.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Helga Helten and Petra Ibold for the excellent technical assistance. This study was supported by financial support from ProMyelo-SFZ (MK) and by a START grant (TC) from the Faculty of Medicine (RWTH Aachen University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Additional information

K. Janssen and M. Rickert contributed equally to this work as first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janssen, K., Rickert, M., Clarner, T. et al. Absence of CCL2 and CCL3 Ameliorates Central Nervous System Grey Matter But Not White Matter Demyelination in the Presence of an Intact Blood–Brain Barrier. Mol Neurobiol 53, 1551–1564 (2016). https://doi.org/10.1007/s12035-015-9113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9113-6

Keywords

Navigation