Skip to main content
Log in

Transgenic Mice Overexpressing Human Angiotensin I Receptor Gene Are Susceptible to Stroke Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypertension is one of the co-morbid conditions for stroke and profoundly increases its incidence. Angiotensin II (AngII) is shown to be at the center stage in driving the renin angiotensin system via activation of angiotensin 1 receptor (AT1R). This makes the AT1R gene one of the candidates whose differential regulation leads to the predisposition to disorders associated with hypertension. A haplotype block of four SNPs is represented primarily by haplotype-I, or Hap-I (TTAA), and haplotype-II, or Hap-II (AGCG), in the promoter of human AT1R (hAT1R) gene. To better understand the physiological role of these haplotypes, transgenic (TG) mice containing Hap-I and Hap-II of the hAT1R gene in a 166-kb bacterial artificial chromosome (BAC) were generated. Mice received injection of endothelin-1 (1 mg/ml) directly in to the striatum and were evaluated for neurologic deficit scores and sacrificed for analysis of infarct volume and mRNA levels of various proteins. Mice containing Hap-I suffered from significantly higher neurological deficits and larger brain infarcts than Hap II. Similarly, the molecular analysis of oxidant and inflammatory markers in brains of mice showed a significant increase (p < 0.05) in NOX-1 (2.3-fold), CRP (4.3-fold), and IL6 (1.9-fold) and a corresponding reduced expression of antioxidants SOD (60 %) and HO1 (55 %) in Hap-I mice as compared to Hap-II mice. These results suggest that increased expression of hAT1R rendered Hap-I TG mice susceptible to stroke-related pathology, possibly due to increased level of brain inflammatory and oxidative stress markers and a suppressed antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dubow J, Fink ME (2011) Impact of hypertension on stroke. Curr Atheroscler Rep 13(4):298–305. doi:10.1007/s11883-011-0187-y

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    Article  PubMed  Google Scholar 

  3. Unger T, Badoer E, Ganten D, Lang RE, Rettig R (1988) Brain angiotensin: pathways and pharmacology. Circulation 77(6 Pt 2):I40–54

    CAS  PubMed  Google Scholar 

  4. Li J, Culman J, Hortnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M et al (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 19(6):617–619. doi:10.1096/fj.04-2960fje

    Article  CAS  PubMed  Google Scholar 

  5. Ganten D, Boucher R, Genest J (1971) Renin activity in brain tissue of puppies and adult dogs. Brain Res 33(2):557–559

    Article  CAS  PubMed  Google Scholar 

  6. Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, Boucher R, Genest J (1971) Renin in dog brain. Am J Physiol 221(6):1733–1737

    CAS  PubMed  Google Scholar 

  7. Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Archiv Eur J Physiol 465(1):133–151. doi:10.1007/s00424-012-1102-2

    Article  CAS  Google Scholar 

  8. Ando H, Zhou J, Macova M, Imboden H, Saavedra JM (2004) Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35(7):1726–1731. doi:10.1161/01.STR.0000129788.26346.18

    Article  CAS  PubMed  Google Scholar 

  9. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66(1):8–17

    Article  CAS  PubMed  Google Scholar 

  10. Saavedra JM, Nishimura Y (1999) Angiotensin and cerebral blood flow. Cell Mol Neurobiol 19(5):553–573

    Article  CAS  PubMed  Google Scholar 

  11. Edvinsson L, Hardebo JE, Owman C (1979) Effects of angiotensin II on cerebral blood vessels. Acta Physiol Scand 105(3):381–383. doi:10.1111/j.1748-1716.1979.tb06355.x

    Article  CAS  PubMed  Google Scholar 

  12. Warnholtz A, Nickenig G, Schulz E, Macharzina R, Brasen JH, Skatchkov M, Heitzer T, Stasch JP et al (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99(15):2027–2033

    Article  CAS  PubMed  Google Scholar 

  13. Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM (2007) Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85(4):462–472. doi:10.1016/j.exer.2007.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito T, Yamakawa H, Bregonzio C, Terron JA, Falcon-Neri A, Saavedra JM (2002) Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke 33(9):2297–2303

    Article  CAS  PubMed  Google Scholar 

  15. Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 31(10):2478–2486

    Article  CAS  PubMed  Google Scholar 

  16. Ito T, Nishimura Y, Saavedra J (2001) Pre-treatment with candesartan protects from cerebral ischaemia. J Renin-Angiotensin-Aldosterone Syst 2(3):174–179. doi:10.3317/jraas.2001.024

    Article  CAS  PubMed  Google Scholar 

  17. Jain S, Prater A, Pandey V, Rana A, Puri N, Kumar A (2013) A haplotype of Angiotensin receptor type 1 associated with human hypertension increases blood pressure in transgenic mice. J Biol Chem 288(52):37048–37056. doi:10.1074/jbc.M113.520023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D et al (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119(3):524–530. doi:10.1172/JCI36703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Haene B, Vandesompele J, Hellemans J (2010) Accurate and objective copy number profiling using real-time quantitative PCR. Methods 50(4):262–270. doi:10.1016/j.ymeth.2009.12.007

    Article  PubMed  Google Scholar 

  20. Soylu H, Zhang D, Buist R, Martin M, Albensi BC, Parkinson FE (2012) Intracortical injection of endothelin-1 induces cortical infarcts in mice: effect of neuronal expression of an adenosine transporter. Exp Transl Stroke Med 4(1):4. doi:10.1186/2040-7378-4-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shah ZA, Nada SE, Dore S (2011) Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience 180:248–255. doi:10.1016/j.neuroscience.2011.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  23. Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76(1):8–18. doi:10.1016/j.cardiores.2007.06.004

    Article  PubMed  Google Scholar 

  24. Kim JA, Berliner JA, Nadler JL (1996) Angiotensin II increases monocyte binding to endothelial cells. Biochem Biophys Res Commun 226(3):862–868. doi:10.1006/bbrc.1996.1441

    Article  CAS  PubMed  Google Scholar 

  25. Petnehazy T, Stokes KY, Wood KC, Russell J, Granger DN (2006) Role of blood cell-associated AT1 receptors in the microvascular responses to hypercholesterolemia. Arterioscler Thromb Vasc Biol 26(2):313–318. doi:10.1161/01.ATV.0000193625.32499.71

    Article  CAS  PubMed  Google Scholar 

Download references

Sources of Funding

This study was funded in part by the Research Support: NIH grants HL081752 and HL66296 to AK and NIH grant R00AT004197 to ZAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudhir Jain or Zahoor A. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Tulsulkar, J., Rana, A. et al. Transgenic Mice Overexpressing Human Angiotensin I Receptor Gene Are Susceptible to Stroke Injury. Mol Neurobiol 53, 1533–1539 (2016). https://doi.org/10.1007/s12035-015-9109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9109-2

Keywords

Navigation