Skip to main content

Advertisement

Log in

Cofilin Inhibition Restores Neuronal Cell Death in Oxygen–Glucose Deprivation Model of Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer’s and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) N Engl J Med 333(24):1581–1587. doi:10.1056/NEJM199512143332401

    Article  Google Scholar 

  2. Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519. doi:10.1126/science.279.5350.514

    Article  PubMed  CAS  Google Scholar 

  3. Bernstein BW, Bamburg JR (2010) ADF/cofilin: a functional node in cell biology. Trends Cell Biol 20(4):187–195. doi:10.1016/j.tcb.2010.01.001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473. doi:10.1152/physrev.00026.2002

    Article  PubMed  CAS  Google Scholar 

  5. Suurna MV, Ashworth SL, Hosford M, Sandoval RM, Wean SE, Shah BM, Bamburg JR, Molitoris BA (2006) Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am J Physiol Renal Physiol 290(6):F1398–1407. doi:10.1152/ajprenal.00194.2005

    Article  PubMed  CAS  Google Scholar 

  6. Bamburg JR, Wiggan OP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12(12):598–605

    Article  PubMed  CAS  Google Scholar 

  7. Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2(9):628–636

    Article  PubMed  CAS  Google Scholar 

  8. Klamt F, Zdanov S, Levine RL, Pariser A, Zhang Y, Zhang B, Yu LR, Veenstra TD, Shacter E (2009) Oxidant-induced apoptosis is mediated by oxidation of the actin-regulatory protein cofilin. Nat Cell Biol 11(10):1241–1246. doi:10.1038/ncb1968

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Nada SE, Shah ZA (2012) Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 46(1):180–189. doi:10.1016/j.nbd.2012.01.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Olechnowicz SW, Fedele AO, Peet DJ (2012) Hypoxic induction of the regulator of G-protein signalling 4 gene is mediated by the hypoxia-inducible factor pathway. PLoS ONE 7(9):e44564. doi:10.1371/journal.pone.0044564PONE-D-12-18040

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Nada SE, Tulsulkar J, Raghavan A, Hensley K, Shah ZA (2012) A derivative of the CRMP2 binding compound lanthionine ketimine provides neuroprotection in a mouse model of cerebral ischemia. Neurochem Int 61(8):1357–1363. doi:10.1016/j.neuint.2012.09.013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Dimauro I, Pearson T, Caporossi D, Jackson MJ (2012) A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes 5:513. doi:10.1186/1756-0500-5-513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787(11):1395–1401. doi:10.1016/j.bbabio.2009.06.009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280(13):12683–12689. doi:10.1074/jbc.M411494200

    Article  PubMed  CAS  Google Scholar 

  15. Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P (2003) Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol 5(12):1083–1089. doi:10.1038/ncb1070ncb1070

    Article  PubMed  CAS  Google Scholar 

  16. Posadas I, Perez-Martinez FC, Guerra J, Sanchez-Verdu P, Cena V (2012) Cofilin activation mediates Bax translocation to mitochondria during excitotoxic neuronal death. J Neurochem 120(4):515–527. doi:10.1111/j.1471-4159.2011.07599.x

    Article  PubMed  CAS  Google Scholar 

  17. Huang TY, Minamide LS, Bamburg JR, Bokoch GM (2008) Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 15(5):691–703. doi:10.1016/j.devcel.2008.09.017

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Cichon J, Sun C, Chen B, Jiang M, Chen XA, Sun Y, Wang Y, Chen G (2012) Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J Biol Chem 287(6):3919–3929. doi:10.1074/jbc.M111.301911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Gurniak CB, Perlas E, Witke W (2005) The actin depolymerizing factor n-cofilin is essential for neural tube morphogenesis and neural crest cell migration. Dev Biol 278(1):231–241. doi:10.1016/j.ydbio.2004.11.010

    Article  PubMed  CAS  Google Scholar 

  20. Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21(18):2347–2357. doi:10.1101/gad.434307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Takahashi M, Tsujioka Y, Yamada T, Tsuboi Y, Okada H, Yamamoto T, Liposits Z (1999) Glycosylation of microtubule-associated protein tau in Alzheimer’s disease brain. Acta Neuropathol 97(6):635–641

    Article  PubMed  CAS  Google Scholar 

  22. Lipton SA (1999) Neuronal protection and destruction by NO. Cell Death Differ 6(10):943–951. doi:10.1038/sj.cdd.4400580

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, Molitoris BA (1999) Ischemia activates actin depolymerizing factor: role in proximal tubule microvillar actin alterations. Am J Physiol 276(4 Pt 2):F544–551

    PubMed  CAS  Google Scholar 

  24. Woo JA, Jung AR, Lakshmana MK, Bedrossian A, Lim Y, Bu JH, Park SA, Koo EH, Mook-Jung I, Kang DE (2012) Pivotal role of the RanBP9-cofilin pathway in Abeta-induced apoptosis and neurodegeneration. Cell Death Differ 19(9):1413–1423. doi:10.1038/cdd.2012.14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Lim D, Iyer A, Ronco V, Grolla AA, Canonico PL, Aronica E, Genazzani AA (2013) Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB. Glia 61(7):1134–1145. doi:10.1002/glia.22502

    Article  PubMed  Google Scholar 

  26. Kim JE, Ryu HJ, Kim MJ, Kim DW, Kwon OS, Choi SY, Kang TC (2010) Pyridoxal-5′-phosphate phosphatase/chronophin induces astroglial apoptosis via actin-depolymerizing factor/cofilin system in the rat brain following status epilepticus. Glia 58(16):1937–1948. doi:10.1002/glia.21063

    Article  PubMed  Google Scholar 

  27. Rasmussen I, Pedersen LH, Byg L, Suzuki K, Sumimoto H, Vilhardt F (2010) Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 11:44. doi:10.1186/1471-2172-11-44

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Hadas S, Spira M, Hanisch UK, Reichert F, Rotshenker S (2012) Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation 9:166. doi:10.1186/1742-2094-9-166

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Gitik M, Kleinhaus R, Hadas S, Reichert F, Rotshenker S (2014) Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci 8:104. doi:10.3389/fncel.2014.00104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was partly funded by a grant from NIH (R00AT004197) and start-up funds from The University of Toledo to ZAS. Qasim Alhadidi was supported by Higher Committee for Education Development in Iraq (www.hcediraq.org). The authors would like to thank Charisse N. Montgomery for her assistance in the manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor A. Shah.

Additional information

A. Madineni and Q. Alhadidi contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madineni, A., Alhadidi, Q. & Shah, Z.A. Cofilin Inhibition Restores Neuronal Cell Death in Oxygen–Glucose Deprivation Model of Ischemia. Mol Neurobiol 53, 867–878 (2016). https://doi.org/10.1007/s12035-014-9056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9056-3

Keywords

Navigation