Molecular Neurobiology

, Volume 53, Issue 2, pp 810–817 | Cite as

Ursodeoxycholic Acid Ameliorates Apoptotic Cascade in the Rotenone Model of Parkinson’s Disease: Modulation of Mitochondrial Perturbations

  • Noha F. Abdelkader
  • Marwa M. SafarEmail author
  • Hesham A. Salem


The recent emergence of ursodeoxycholic acid (UDCA) as a contender in modifying neurotoxicity in human dopaminergic cells as well as its recognized anti-apoptotic and anti-inflammatory potentials in various hepatic pathologies raised impetus in investigating its anti-parkinsonian effect in rat rotenone model. UDCA prominently improved motor performance in the open field test and halted the decline in the striatal dopamine content. Meanwhile, it improved mitochondrial function as verified by elevation of ATP associated with preservation of mitochondrial integrity as portrayed in the electron microscope examination. In addition, through its anti-inflammatory potential, UDCA reduced the rotenone-induced nuclear factor-κB expression and tumor necrosis factor alpha level. Furthermore, UDCA amended alterations in Bax and Bcl-2 and reduced the activities of caspase-8, caspase-9, and caspase-3, indicating that it suppressed rotenone-induced apoptosis via modulating both intrinsic and extrinsic pathways. In conclusion, UDCA can be introduced as a novel approach for the management of Parkinson’s disease via anti-apoptotic and anti-inflammatory mechanisms. These effects are probably linked to dopamine synthesis and mitochondrial regulation.

Key words

Ursodeoxycholic acid Rotenone Caspases Dopamine Nuclear factor-κB ATP 



The authors are grateful to Dr. Manal I. Salman, professor of Pathology, Faculty of Medicine, Ain Shams University, and vice director of Electron Microscopy Unit at Ain Shams University Specialized Hospital, for her efforts in the electron microscopic examinations.

Conflict of Interest

The authors declare that there are no conflicts of interest to disclose.


  1. 1.
    Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373(9680):2055–2066CrossRefPubMedGoogle Scholar
  2. 2.
    Phani S, Loike JD, Przedborski S (2012) Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S207–S209CrossRefPubMedGoogle Scholar
  3. 3.
    Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246CrossRefPubMedGoogle Scholar
  4. 4.
    Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135–172CrossRefPubMedGoogle Scholar
  5. 5.
    Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(3):S61–S70, discussion S70-62CrossRefPubMedGoogle Scholar
  6. 6.
    Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44(10):1787–1794PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–819CrossRefPubMedGoogle Scholar
  8. 8.
    del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10(1):95–112CrossRefPubMedGoogle Scholar
  9. 9.
    Liu WG, Chen Y, Li B, Lu GQ, Chen SD (2004) Neuroprotection by pergolide against levodopa-induced cytotoxicity of neural stem cells. Neurochem Res 29(12):2207–2214CrossRefPubMedGoogle Scholar
  10. 10.
    Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26(19):5256–5264CrossRefPubMedGoogle Scholar
  11. 11.
    Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827CrossRefPubMedGoogle Scholar
  12. 12.
    Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247(Suppl 2):II3–II10PubMedGoogle Scholar
  13. 13.
    Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sanchez Pozzi EJ (2011) Ursodeoxycholic acid in cholestasis: linking action mechanisms to therapeutic applications. Clin Sci (Lond) 121(12):523–544CrossRefGoogle Scholar
  14. 14.
    Parry GJ, Rodrigues CM, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ (2010) Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol 33(1):17–21CrossRefPubMedGoogle Scholar
  15. 15.
    Yanovsky Y, Schubring SR, Yao Q, Zhao Y, Li S, May A, Haas HL, Lin JS, Sergeeva OA (2012) Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block. PLoS One 7(8):e42512PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM (2009) Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50(9):1721–1734PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36(3):525–531CrossRefPubMedGoogle Scholar
  18. 18.
    Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4(3):165–178PubMedCentralPubMedGoogle Scholar
  19. 19.
    Rodrigues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ (1999) Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6(9):842–854CrossRefPubMedGoogle Scholar
  20. 20.
    Lapenna D, Ciofani G, Festi D, Neri M, Pierdomenico SD, Giamberardino MA, Cuccurullo F (2002) Antioxidant properties of ursodeoxycholic acid. Biochem Pharmacol 64(11):1661–1667CrossRefPubMedGoogle Scholar
  21. 21.
    Miura T, Ouchida R, Yoshikawa N, Okamoto K, Makino Y, Nakamura T, Morimoto C, Makino I, Tanaka H (2001) Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid. J Biol Chem 276(50):47371–47378CrossRefPubMedGoogle Scholar
  22. 22.
    Liu J, Zhou CX, Zhang ZJ, Wang LY, Jing ZW, Wang Z (2012) Synergistic mechanism of gene expression and pathways between jasminoidin and ursodeoxycholic acid in treating focal cerebral ischemia-reperfusion injury. CNS Neurosci Ther 18(8):674–682CrossRefPubMedGoogle Scholar
  23. 23.
    Rodrigues CM, Sola S, Silva R, Brites D (2000) Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol Med 6(11):936–946PubMedCentralPubMedGoogle Scholar
  24. 24.
    Vang S, Longley K, Steer CJ, Low WC (2014) The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Global Adv Health Med 3(3):58–69CrossRefGoogle Scholar
  25. 25.
    Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10):8516–8525CrossRefPubMedGoogle Scholar
  26. 26.
    Swarnkar S, Goswami P, Kamat PK, Gupta S, Patro IK, Singh S, Nath C (2012) Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch Toxicol 86(9):1387–1397CrossRefPubMedGoogle Scholar
  27. 27.
    Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324CrossRefPubMedGoogle Scholar
  28. 28.
    Abd-El Gawad HM, Abdallah DM, El-Abhar HS (2004) Rotenone-induced Parkinson’s like disease: modulating role of coenzyme Q10. J Biol Sci 4(4):568–578CrossRefGoogle Scholar
  29. 29.
    Martinez-Moya P, Romero-Calvo I, Requena P, Hernandez-Chirlaque C, Aranda CJ, Gonzalez R, Zarzuelo A, Suarez MD, Martinez-Augustin O, Marin JJ, de Medina FS (2013) Dose-dependent antiinflammatory effect of ursodeoxycholic acid in experimental colitis. Int Immunopharmacol 15(2):372–380CrossRefPubMedGoogle Scholar
  30. 30.
    van den Buuse M, de Jong W (1989) Differential effects of dopaminergic drugs on open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. J Pharmacol Exp Ther 248(3):1189–1196PubMedGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  32. 32.
    Hayat M (1986) Basic techniques for transmission electron microscopy, 1st edn. Academic Press, OrlandoGoogle Scholar
  33. 33.
    Chun HS, Low WC (2012) Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells. Toxicology 292(2–3):105–112CrossRefPubMedGoogle Scholar
  34. 34.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Jiang X, Jiang H, Shen Z, Wang X (2014) Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci U S A 111(41):14782–14787PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4):437–441PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Denault JB, Salvesen GS (2002) Caspases: keys in the ignition of cell death. Chem Rev 102(12):4489–4500CrossRefPubMedGoogle Scholar
  38. 38.
    Thao TD, Ryu HC, Yoo SH, Rhee DK (2008) Antibacterial and anti-atrophic effects of a highly soluble, acid stable UDCA formula in Helicobacter pylori-induced gastritis. Biochem Pharmacol 75(11):2135–2146CrossRefPubMedGoogle Scholar
  39. 39.
    Fiorotto R, Spirli C, Fabris L, Cadamuro M, Okolicsanyi L, Strazzabosco M (2007) Ursodeoxycholic acid stimulates cholangiocyte fluid secretion in mice via CFTR-dependent ATP secretion. Gastroenterology 133(5):1603–1613CrossRefPubMedGoogle Scholar
  40. 40.
    Rodriguez-Ortigosa CM, Banales JM, Olivas I, Uriarte I, Marin JJ, Corrales FJ, Medina JF, Prieto J (2010) Biliary secretion of S-nitrosoglutathione is involved in the hypercholeresis induced by ursodeoxycholic acid in the normal rat. Hepatology 52(2):667–677CrossRefPubMedGoogle Scholar
  41. 41.
    Nathanson MH, Burgstahler AD, Masyuk A, Larusso NF (2001) Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 358(Pt 1):1–5PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Lin SH (1989) Localization of the ecto-ATPase (ecto-nucleotidase) in the rat hepatocyte plasma membrane. Implications for the functions of the ecto-ATPase. J Biol Chem 264(24):14403–14407PubMedGoogle Scholar
  43. 43.
    Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81(7):1063–1073CrossRefPubMedGoogle Scholar
  44. 44.
    Isenberg JS, Klaunig JE (2000) Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53(2):340–351CrossRefPubMedGoogle Scholar
  45. 45.
    Panov A, Dikalov S, Shalbuyeva N, Taylor G, Sherer T, Greenamyre JT (2005) Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J Biol Chem 280(51):42026–42035CrossRefPubMedGoogle Scholar
  46. 46.
    Neuman M, Angulo P, Malkiewicz I, Jorgensen R, Shear N, Dickson ER, Haber J, Katz G, Lindor K (2002) Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 17(2):196–202CrossRefPubMedGoogle Scholar
  47. 47.
    Ishizaki K, Iwaki T, Kinoshita S, Koyama M, Fukunari A, Tanaka H, Tsurufuji M, Sakata K, Maeda Y, Imada T, Chiba K (2008) Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-alpha and macrophage inflammatory protein-2 production. Eur J Pharmacol 578(1):57–64CrossRefPubMedGoogle Scholar
  48. 48.
    Buryova H, Chalupsky K, Zbodakova O, Kanchev I, Jirouskova M, Gregor M, Sedlacek R (2013) Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity. BMC Gastroenterol 13(1):155PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Rastogi RP, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8:155–181Google Scholar
  50. 50.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490CrossRefPubMedGoogle Scholar
  51. 51.
    Azzaroli F, Mehal W, Soroka CJ, Wang L, Lee J, Crispe IN, Boyer JL (2002) Ursodeoxycholic acid diminishes Fas-ligand-induced apoptosis in mouse hepatocytes. Hepatology 36(1):49–54CrossRefPubMedGoogle Scholar
  52. 52.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424CrossRefPubMedGoogle Scholar
  53. 53.
    Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z (2004) Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79(1):137–146CrossRefPubMedGoogle Scholar
  54. 54.
    Shah SA, Volkov Y, Arfin Q, Abdel-Latif MM, Kelleher D (2006) Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and deoxycholic acid-induced activation of NF-kappaB and AP-1 in human colon cancer cells. Int J Cancer 118(3):532–539CrossRefPubMedGoogle Scholar
  55. 55.
    Joo SS, Won TJ, Lee DI (2004) Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2). Arch Pharm Res 27(9):954–960CrossRefPubMedGoogle Scholar
  56. 56.
    Green DR, Beere HM (2000) Apoptosis. Gone but not forgotten. Nature 405(6782):28–29CrossRefPubMedGoogle Scholar
  57. 57.
    Cassatella MA, Meda L, Bonora S, Ceska M, Constantin G (1993) Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J Exp Med 178(6):2207–2211CrossRefPubMedGoogle Scholar
  58. 58.
    Miyaguchi S, Mori M (2005) Ursodeoxycholic acid (UDCA) suppresses liver interleukin 2 mRNA in the cholangitis model. Hepatogastroenterology 52(62):596–602PubMedGoogle Scholar
  59. 59.
    Keene CD, Rodrigues CM, Eich T, Linehan-Stieers C, Abt A, Kren BT, Steer CJ, Low WC (2001) A bile acid protects against motor and cognitive deficits and reduces striatal degeneration in the 3-nitropropionic acid model of Huntington’s disease. Exp Neurol 171(2):351–360CrossRefPubMedGoogle Scholar
  60. 60.
    Rodrigues CM, Sola S, Nan Z, Castro RE, Ribeiro PS, Low WC, Steer CJ (2003) Tauroursodeoxycholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc Natl Acad Sci U S A 100(10):6087–6092PubMedCentralCrossRefPubMedGoogle Scholar
  61. 61.
    Rodrigues CM, Spellman SR, Sola S, Grande AW, Linehan-Stieers C, Low WC, Steer CJ (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J Cereb Blood Flow Metab 22(4):463–471CrossRefPubMedGoogle Scholar
  62. 62.
    Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM (2008) Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease. Trends Mol Med 14(2):54–62CrossRefPubMedGoogle Scholar
  63. 63.
    Duan WM, Rodrigues CM, Zhao LR, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant 11(3):195–205PubMedGoogle Scholar
  64. 64.
    Keene CD, Rodrigues CM, Eich T, Chhabra MS, Steer CJ, Low WC (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci U S A 99(16):10671–10676PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Castro RE, Sola S, Ramalho RM, Steer CJ, Rodrigues CM (2004) The bile acid tauroursodeoxycholic acid modulates phosphorylation and translocation of bad via phosphatidylinositol 3-kinase in glutamate-induced apoptosis of rat cortical neurons. J Pharmacol Exp Ther 311(2):845–852CrossRefPubMedGoogle Scholar
  66. 66.
    Sola S, Castro RE, Laires PA, Steer CJ, Rodrigues CM (2003) Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med 9(9–12):226–234PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Noha F. Abdelkader
    • 1
  • Marwa M. Safar
    • 1
    Email author
  • Hesham A. Salem
    • 1
  1. 1.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations