Skip to main content

Advertisement

Log in

Naringenin Suppresses Neuroinflammatory Responses Through Inducing Suppressor of Cytokine Signaling 3 Expression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that neuroinflammation is closely associated with the pathogenesis of neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease. The hallmark of neuroinflammation is considered to be microglial activation in the central nervous system (CNS). Activated microglia release pro-inflammatory cytokines which cause neuroinflammation and progressive neuronal cell death. Therefore, inhibition of microglial activation is considered an important strategy in the development of neuroprotective strategy. Naringenin, a flavonoid found in citrus fruits and tomatoes, has been reported to have anti-oxidant, anti-cancer, and anti-inflammatory properties. However, the mechanism of its beneficial anti-inflammatory effects in the CNS is poorly understood. In this study, we demonstrated that naringenin inhibites the release of nitric oxide (NO), the expression of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), as well as pro-inflammatory cytokines in microglial cells. Treatment of naringenin also induced suppressors of cytokine signaling (SOCS)-3 expression in microglia. The SOCS-3 expression and anti-inflammatory effects of naringenin were found to be regulated by adenosine monophosphate-activated protein kinase α (AMPKα) and protein kinase C δ (PKCδ). Besides, naringenin exerted protective property against neurotoxicity caused by LPS-induced microglial activation. Our findings suggest that naringenin-inhibited iNOS and COX-2 expression is mediated by SOCS-3 activation through AMPKα and PKCδ signaling pathways. In a mouse model, naringenin also showed significant protective effects on microglial activation and improved motor coordination function as well. Therefore, naringenin that involves in anti-neuroinflammatory responses and neuroprotection might be a potential agent for treatment of inflammation-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrini F, De Koninck Y (2013) Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013:429815. doi:10.1155/2013/429815

    PubMed Central  PubMed  Google Scholar 

  2. Lin HY, Huang BR, Yeh WL, Lee CH, Huang SS, Lai CH, Lin H, Lu DY (2014) Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-alpha1/heme oxygenase-1 pathways. Neurobiol Aging 35(1):191–202. doi:10.1016/j.neurobiolaging.2013.06.020

    Article  CAS  PubMed  Google Scholar 

  3. Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Inflammation in neurodegenerative diseases—an update. Immunology 142(2):151–166. doi:10.1111/imm.12233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A (2013) SOCS, inflammation, and cancer. JAKSTAT 2(3):e24053. doi:10.4161/jkst.24053

    PubMed Central  PubMed  Google Scholar 

  5. Baker BJ, Akhtar LN, Benveniste EN (2009) SOCS1 and SOCS3 in the control of CNS immunity. Trends Immunol 30(8):392–400. doi:10.1016/j.it.2009.07.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gao A, Van Dyke TE (2014) Role of suppressors of cytokine signaling 3 in bone inflammatory responses. Front Immunol 4:506. doi:10.3389/fimmu.2013.00506

    Article  PubMed Central  PubMed  Google Scholar 

  7. Li Y, de Haar C, Peppelenbosch MP, van der Woude CJ (2012) SOCS3 in immune regulation of inflammatory bowel disease and inflammatory bowel disease-related cancer. Cytokine Growth Factor Rev 23(3):127–138. doi:10.1016/j.cytogfr.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Qin H, Roberts KL, Niyongere SA, Cong Y, Elson CO, Benveniste EN (2007) Molecular mechanism of lipopolysaccharide-induced SOCS-3 gene expression in macrophages and microglia. J Immunol 179(9):5966–5976

    Article  CAS  PubMed  Google Scholar 

  9. Lu DY, Huang BR, Yeh WL, Lin HY, Huang SS, Liu YS, Kuo YH (2013) Anti-neuroinflammatory effect of a novel caffeamide derivative, KS370G, in microglial cells. Mol Neurobiol 48(3):863–874. doi:10.1007/s12035-013-8474-y

    Article  CAS  PubMed  Google Scholar 

  10. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109(Suppl 1):17–23. doi:10.1111/j.1471-4159.2009.05916.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I (2004) 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role of AMP-activated protein kinase. J Neurosci 24(2):479–487. doi:10.1523/JNEUROSCI. 4288-03.2004

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Forman LW, Williams RM, Faller DV (2014) Protein kinase C-delta inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer 14(1):90. doi:10.1186/1471-2407-14-90

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim BC, Jeon WK, Hong HY, Jeon KB, Hahn JH, Kim YM, Numazawa S, Yosida T, Park EH, Lim CJ (2007) The anti-inflammatory activity of Phellinus linteus (Berk. & M.A. Curt.) is mediated through the PKCdelta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1. J Ethnopharmacol 113(2):240–247. doi:10.1016/j.jep.2007.05.032

    Article  PubMed  Google Scholar 

  14. Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141(6):997–1005. doi:10.1038/sj.bjp.0705688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yang MS, Lee J, Ji KA, Min KJ, Lee MA, Jou I, Joe E (2004) Thrombin induces suppressor of cytokine signaling 3 expression in brain microglia via protein kinase Cdelta activation. Biochem Biophys Res Commun 317(3):811–816. doi:10.1016/j.bbrc.2004.03.118

    Article  CAS  PubMed  Google Scholar 

  16. Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 284(1):563–574. doi:10.1074/jbc.M803984200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Park JH, Jin CY, Lee BK, Kim GY, Choi YH, Jeong YK (2008) Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol 46(12):3684–3690. doi:10.1016/j.fct.2008.09.056

    Article  CAS  PubMed  Google Scholar 

  18. Arul D, Subramanian P (2013) Naringenin (citrus flavonone) induces growth inhibition, cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Pathol Oncol Res 19(4):763–770. doi:10.1007/s12253-013-9641-1

    Article  CAS  PubMed  Google Scholar 

  19. Park HY, Kim GY, Choi YH (2012) Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Int J Mol Med 30(1):204–210. doi:10.3892/ijmm.2012.979

    CAS  PubMed  Google Scholar 

  20. Vafeiadou K, Vauzour D, Lee HY, Rodriguez-Mateos A, Williams RJ, Spencer JP (2009) The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch Biochem Biophys 484(1):100–109. doi:10.1016/j.abb.2009.01.016

    Article  CAS  PubMed  Google Scholar 

  21. Raza SS, Khan MM, Ahmad A, Ashafaq M, Islam F, Wagner AP, Safhi MM (2013) Neuroprotective effect of naringenin is mediated through suppression of NF-kappaB signaling pathway in experimental stroke. Neuroscience 230:157–171. doi:10.1016/j.neuroscience.2012.10.041

    Article  CAS  PubMed  Google Scholar 

  22. Huang BR, Tsai CF, Lin HY, Tseng WP, Huang SS, Wu CR, Lin C, Yeh WL, Lu DY (2013) Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid. Toxicol Appl Pharmacol 269(1):43–50. doi:10.1016/j.taap.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  23. Chuang JY, Chang PC, Shen YC, Lin C, Tsai CF, Chen JH, Yeh WL, Wu LH, Lin HY, Liu YS, Lu DY (2014) Regulatory effects of fisetin on microglial activation. Molecules 19(7):8820–8839. doi:10.3390/molecules19078820

    Article  PubMed  Google Scholar 

  24. Lin HY, Yeh WL, Huang BR, Lin C, Lai CH, Lin H, Lu DY (2012) Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons. PLoS One 7(11):e50138. doi:10.1371/journal.pone.0050138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lu DY, Chen JH, Tan TW, Huang CY, Yeh WL, Hsu HC (2013) Resistin protects against 6-hydroxydopamine-induced cell death in dopaminergic-like MES23.5 cells. J Cell Physiol 228(3):563–571. doi:10.1002/jcp.24163

    Article  CAS  PubMed  Google Scholar 

  26. Lu DY, Tang CH, Chen YH, Wei IH (2010) Berberine suppresses neuroinflammatory responses through AMP-activated protein kinase activation in BV-2 microglia. J Cell Biochem 110(3):697–705. doi:10.1002/jcb.22580

    Article  CAS  PubMed  Google Scholar 

  27. Wiejak J, Dunlop J, Gao S, Borland G, Yarwood SJ (2012) Extracellular signal-regulated kinase mitogen-activated protein kinase-dependent SOCS-3 gene induction requires c-Jun, signal transducer and activator of transcription 3, and specificity protein 3 transcription factors. Mol Pharmacol 81(5):657–668. doi:10.1124/mol.111.076976

    Article  CAS  PubMed  Google Scholar 

  28. Miah MA, Choi SS, Lee SH (2012) Blueberry inhibits LPS-induced murine microglia cell activation and cell death. Bangl J Vet Med 10(1&2):87–92

  29. Martinez FO (2011) Regulators of macrophage activation. Eur J Immunol 41(6):1531–1534. doi:10.1002/eji.201141670

    Article  CAS  PubMed  Google Scholar 

  30. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18. doi:10.1111/nan.12011

    Article  CAS  PubMed  Google Scholar 

  31. Qin H, Wilson CA, Roberts KL, Baker BJ, Zhao X, Benveniste EN (2006) IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3. J Immunol 177(11):7761–7771

    Article  CAS  PubMed  Google Scholar 

  32. Matsuura H, Sakaue M, Subbaramaiah K, Kamitani H, Eling TE, Dannenberg AJ, Tanabe T, Inoue H, Arata J, Jetten AM (1999) Regulation of cyclooxygenase-2 by interferon gamma and transforming growth factor alpha in normal human epidermal keratinocytes and squamous carcinoma cells. Role of mitogen-activated protein kinases. J Biol Chem 274(41):29138–29148

    Article  CAS  PubMed  Google Scholar 

  33. Uto T, Fujii M, Hou DX (2007) Effects of 6-(methylsulfinyl)hexyl isothiocyanate on cyclooxygenase-2 expression induced by lipopolysaccharide, interferon-gamma and 12-O-tetradecanoylphorbol-13-acetate. Oncol Rep 17(1):233–238

    CAS  PubMed  Google Scholar 

  34. Giroux M, Descoteaux A (2000) Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha. J Immunol 165(7):3985–3991

    Article  CAS  PubMed  Google Scholar 

  35. Palmer DC, Restifo NP (2009) Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol 30(12):592–602. doi:10.1016/j.it.2009.09.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Auernhammer CJ, Melmed S (2001) The central role of SOCS-3 in integrating the neuro-immunoendocrine interface. J Clin Invest 108(12):1735–1740. doi:10.1172/JCI14662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Akifusa S, Kamio N, Shimazaki Y, Yamaguchi N, Nonaka K, Yamashita Y (2010) Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 111(3):597–606. doi:10.1002/jcb.22745

    Article  CAS  PubMed  Google Scholar 

  38. Alexander WS (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2(6):410–416. doi:10.1038/nri818

    CAS  PubMed  Google Scholar 

  39. Babon JJ, Nicola NA (2012) The biology and mechanism of action of suppressor of cytokine signaling 3. Growth Factors 30(4):207–219. doi:10.3109/08977194.2012.687375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Linke A, Goren I, Bosl MR, Pfeilschifter J, Frank S (2010) Epithelial overexpression of SOCS-3 in transgenic mice exacerbates wound inflammation in the presence of elevated TGF-beta1. J Invest Dermatol 130(3):866–875. doi:10.1038/jid.2009.345

    Article  CAS  PubMed  Google Scholar 

  41. Cacalano NA, Sanden D, Johnston JA (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 3(5):460–465. doi:10.1038/35074525

    Article  CAS  PubMed  Google Scholar 

  42. Lee IT, Lin CC, Lee CY, Hsieh PW, Yang CM (2013) Protective effects of (-)-epigallocatechin-3-gallate against TNF-alpha-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J Nutr Biochem 24(1):124–136. doi:10.1016/j.jnutbio.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  43. Wiejak J, Dunlop J, Mackay SP, Yarwood SJ (2013) Flavanoids induce expression of the suppressor of cytokine signalling 3 (SOCS3) gene and suppress IL-6-activated signal transducer and activator of transcription 3 (STAT3) activation in vascular endothelial cells. Biochem J 454(2):283–293. doi:10.1042/BJ20130481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lovren F, Pan Y, Quan A, Szmitko PE, Singh KK, Shukla PC, Gupta M, Chan L, Al-Omran M, Teoh H, Verma S (2010) Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages. Am J Physiol Heart Circ Physiol 299(3):H656–H663. doi:10.1152/ajpheart.00115.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Science Council (NSC 102-2320-B-039-051-MY3 and NSC 102-2320-B-039-026-MY3), China Medical University (CMU102-ASIA-24), and Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence (DOH102-TD-B-111-004).

Conflict of Interest

The authors report no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dah-Yuu Lu.

Additional information

Ling-Hsuan Wu and Chingju Lin contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LH., Lin, C., Lin, HY. et al. Naringenin Suppresses Neuroinflammatory Responses Through Inducing Suppressor of Cytokine Signaling 3 Expression. Mol Neurobiol 53, 1080–1091 (2016). https://doi.org/10.1007/s12035-014-9042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9042-9

Keywords

Navigation