Molecular Neurobiology

, Volume 53, Issue 1, pp 455–471 | Cite as

The Binding Receptors of Aβ: an Alternative Therapeutic Target for Alzheimer’s Disease

  • Min Xia
  • Xiaofang Cheng
  • Ruofan Yi
  • Dong GaoEmail author
  • Jiaxiang XiongEmail author


Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which causes the deterioration of memory and other cognitive abilities of the elderly. Previous lines of research have shown that Aβ is an essential factor in AD pathology and the soluble oligomeric species of Aβ peptide is presumed to be the drivers of synaptic impairment in AD. However, the exact mechanisms underlying Aβ-induced synapse dysfunction are still not fully understood. Recently, increasing evidence suggests that some potential receptors which bind specifically with Aβ may play important roles in inducing the toxicity of the neurons in AD pathology. These receptors include the cellular prion protein (PrPc), the α7 nicotinic acetylcholine receptor (α7nAChR), the p75 neurotrophin receptor (p75NTR), the beta-adrenergic receptors (β-ARs), the Eph receptors, the paired immunoglobulin-like receptor B (PirB), the PirB’s human ortholog receptor (LilrB2), and the Fcγ receptor II-b (FcγRIIb). This review summarizes the characters of these prominent receptors and how the bindings of them with Aβ inhibit the LTP, decrease the number of dendritic spine, damage the neurons, and so on in AD pathogenesis. Blocking or rescuing these receptors may have significant importance for AD treatments.


Alzheimer’s disease Amyloid-beta Binding receptors Synaptic dysfunction Dementia 




Amyloid precursor protein


Cellular prion protein


β2 Adrenergic receptor


α7 Nicotinic acetylcholine receptor


Eph receptor B2


P75 neurotrophin receptor


Paired immunoglobulin-like receptor B


Fcγ receptor II-b


AMPA subtype glutamate receptors


N-methyl-d-aspartate receptors


Extracellular signal-regulated kinase


Mitogen-activated protein kinase


Protein kinase A


c-Jun N-terminal kinase

CREB protein

cAMP regulatory element-binding protein


Eukaryotic elongation factor 2



We thank Zhongxiang Yao, Xiaowei Chen, Kan Li, and Jia Lou for their help in making suggestions and designing figures. This work was supported by grants from the National Natural Science Foundation of China (no. 81271463 and no. 81371457), as well as the High Education Teaching Reform Project of Chongqing (no. 132080).

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: in vitro and in vivo mechanisms related to Alzheimer’s disease. J Neurosci 21(12):4125–4133PubMedGoogle Scholar
  2. 2.
    Arroyo G, Aldea M, Fuentealba J, Garcia AG (2002) Nicotinic receptor, galantamine and Alzheimer disease. Rev Neurol 34(11):1057–1065PubMedGoogle Scholar
  3. 3.
    Femminella GD, Rengo G, Pagano G, de Lucia C, Komici K, Parisi V, Cannavo A, Liccardo D, Vigorito C, Filardi PP, Ferrara N, Leosco D (2013) beta-Adrenergic receptors and G protein-coupled receptor kinase-2 in Alzheimer’s disease: a new paradigm for prognosis and therapy? J Alzheimers Dis 34(2):341–347PubMedGoogle Scholar
  4. 4.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  5. 5.
    Kanekiyo T, Xu H, Bu G (2014) ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 81(4):740–754PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96(6):3228–3233PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Klein WL (2002) Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5):345–352PubMedCrossRefGoogle Scholar
  8. 8.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866PubMedCrossRefGoogle Scholar
  9. 9.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Puzzo D, Arancio O (2013) Amyloid-beta peptide: Dr. Jekyll or Mr. Hyde? J Alzheimers Dis 33(Suppl 1):S111–120PubMedPubMedCentralGoogle Scholar
  11. 11.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539PubMedCrossRefGoogle Scholar
  12. 12.
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440(7082):352–357PubMedCrossRefGoogle Scholar
  13. 13.
    Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924(2):133–140PubMedCrossRefGoogle Scholar
  14. 14.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466(7308):E3–4, discussion E4-5PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27(4):796–807PubMedCrossRefGoogle Scholar
  17. 17.
    Barrett GL (2000) The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol 61(2):205–229PubMedCrossRefGoogle Scholar
  18. 18.
    Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA (1997) Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100(9):2333–2340PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tsigelny IF, Sharikov Y, Kouznetsova VL, Greenberg JP, Wrasidlo W, Gonzalez T, Desplats P, Michael SE, Trejo-Morales M, Overk CR, Masliah E (2014) Structural diversity of Alzheimer’s disease amyloid-beta dimers and their role in oligomerization and fibril formation. J Alzheimers Dis 39(3):583–600PubMedPubMedCentralGoogle Scholar
  20. 20.
    Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311(Pt 1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F, Armato U (2002) Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195(7):907–918PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477PubMedCrossRefGoogle Scholar
  23. 23.
    Harris DA, Lele P, Snider WD (1993) Localization of the mRNA for a chicken prion protein by in situ hybridization. Proc Natl Acad Sci U S A 90(9):4309–4313PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51(2):229–240PubMedCrossRefGoogle Scholar
  25. 25.
    Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75(2):153–161PubMedCrossRefGoogle Scholar
  26. 26.
    Kanaani J, Prusiner SB, Diacovo J, Baekkeskov S, Legname G (2005) Recombinant prion protein induces rapid polarization and development of synapses in embryonic rat hippocampal neurons in vitro. J Neurochem 95(5):1373–1386PubMedCrossRefGoogle Scholar
  27. 27.
    Manson JC, Hope J, Clarke AR, Johnston A, Black C, MacLeod N (1995) PrP gene dosage and long term potentiation. Neurodegeneration 4(1):113–114PubMedCrossRefGoogle Scholar
  28. 28.
    Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380(6575):639–642PubMedCrossRefGoogle Scholar
  29. 29.
    Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, Race R, Manson JC, Chesebro B, Oldstone MB (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19(1–2):255–265PubMedCrossRefGoogle Scholar
  30. 30.
    Schwarze-Eicker K, Keyvani K, Gortz N, Westaway D, Sachser N, Paulus W (2005) Prion protein (PrPc) promotes beta-amyloid plaque formation. Neurobiol Aging 26(8):1177–1182PubMedCrossRefGoogle Scholar
  31. 31.
    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Um JW, Strittmatter SM (2013) Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7(1):37–41PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hirsch TZ, Hernandez-Rapp J, Martin-Lanneree S, Launay JM, Mouillet-Richard S (2014) PrP signalling in neurons: from basics to clinical challenges. Biochimie. 104:2–11. doi:10.1016/j.biochi.2014.06.009.Google Scholar
  35. 35.
    Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362(6420):543–546PubMedCrossRefGoogle Scholar
  36. 36.
    Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(Pt 2):477–492PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kudo W, Lee HP, Zou WQ, Wang X, Perry G, Zhu X, Smith MA, Petersen RB, Lee HG (2012) Cellular prion protein is essential for oligomeric amyloid-beta-induced neuronal cell death. Hum Mol Genet 21(5):1138–1144PubMedCrossRefGoogle Scholar
  39. 39.
    Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288(13):8935–8951PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79(5):887–902PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Cheng X, Wu J, Geng M, Xiong J (2014) The role of synaptic activity in the regulation of amyloid beta levels in Alzheimer’s disease. Neurobiol Aging 35(6):1217–1232PubMedCrossRefGoogle Scholar
  42. 42.
    Vergara C, Ordonez-Gutierrez L, Wandosell F, Ferrer I, Del Rio JA, Gavin R (2014) Role of PrP Expression in Tau Protein Levels and Phosphorylation in Alzheimer’s Disease Evolution. Mol NeurobiolGoogle Scholar
  43. 43.
    Klyubin I, Nicoll AJ, Khalili-Shirazi A, Farmer M, Canning S, Mably A, Linehan J, Brown A, Wakeling M, Brandner S, Walsh DM, Rowan MJ, Collinge J (2014) Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer’s disease Abeta synaptotoxicity. J Neurosci 34(18):6140–6145PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci 5(5):1307–1315PubMedGoogle Scholar
  45. 45.
    Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R, Leonard S (1997) Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain. J Comp Neurol 387(3):385–398PubMedCrossRefGoogle Scholar
  46. 46.
    Perry EK, Court JA, Johnson M, Piggott MA, Perry RH (1992) Autoradiographic distribution of [3H]nicotine binding in human cortex: relative abundance in subicular complex. J Chem Neuroanat 5(5):399–405PubMedCrossRefGoogle Scholar
  47. 47.
    McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269(5231):1692–1696PubMedCrossRefGoogle Scholar
  48. 48.
    Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383(6602):713–716PubMedCrossRefGoogle Scholar
  49. 49.
    Shaw S, Bencherif M, Marrero MB (2002) Janus kinase 2, an early target of alpha 7 nicotinic acetylcholine receptor-mediated neuroprotection against Abeta-(1–42) amyloid. J Biol Chem 277(47):44920–44924PubMedCrossRefGoogle Scholar
  50. 50.
    Wevers A, Monteggia L, Nowacki S, Bloch W, Schutz U, Lindstrom J, Pereira EF, Eisenberg H, Giacobini E, de Vos RA, Steur EN, Maelicke A, Albuquerque EX, Schroder H (1999) Expression of nicotinic acetylcholine receptor subunits in the cerebral cortex in Alzheimer’s disease: histotopographical correlation with amyloid plaques and hyperphosphorylated-tau protein. Eur J Neurosci 11(7):2551–2565PubMedCrossRefGoogle Scholar
  51. 51.
    Quirion R, Martel JC, Robitaille Y, Etienne P, Wood P, Nair NP, Gauthier S (1986) Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. Can J Neurol Sci 13(4 Suppl):503–510PubMedCrossRefGoogle Scholar
  52. 52.
    Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R (1998) Amyloid beta-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70(5):2179–2187PubMedCrossRefGoogle Scholar
  53. 53.
    Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275(8):5626–5632PubMedCrossRefGoogle Scholar
  54. 54.
    Auld DS, Kar S, Quirion R (1998) Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci 21(1):43–49PubMedCrossRefGoogle Scholar
  55. 55.
    Wang HY, Lee DH, Davis CB, Shank RP (2000) Amyloid peptide Abeta(1–42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75(3):1155–1161PubMedCrossRefGoogle Scholar
  56. 56.
    Pettit DL, Shao Z, Yakel JL (2001) beta-Amyloid(1–42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci 21(1):RC120PubMedGoogle Scholar
  57. 57.
    Chen L, Yamada K, Nabeshima T, Sokabe M (2006) alpha7 Nicotinic acetylcholine receptor as a target to rescue deficit in hippocampal LTP induction in beta-amyloid infused rats. Neuropharmacology 50(2):254–268PubMedCrossRefGoogle Scholar
  58. 58.
    Wang HY, Li W, Benedetti NJ, Lee DH (2003) Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278(34):31547–31553PubMedCrossRefGoogle Scholar
  59. 59.
    Marks MJ, Burch JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226(3):817–825PubMedGoogle Scholar
  60. 60.
    Fenster CP, Whitworth TL, Sheffield EB, Quick MW, Lester RA (1999) Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine. J Neurosci 19(12):4804–4814PubMedGoogle Scholar
  61. 61.
    Liu Q, Xie X, Lukas RJ, St John PA, Wu J (2013) A novel nicotinic mechanism underlies beta-amyloid-induced neuronal hyperexcitation. J Neurosci 33(17):7253–7263PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59–68PubMedCrossRefGoogle Scholar
  63. 63.
    English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106PubMedCrossRefGoogle Scholar
  64. 64.
    Lawrence JL, Tong M, Alfulaij N, Sherrin T, Contarino M, White MM, Bellinger FP, Todorovic C, Nichols RA (2014) Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal beta-amyloid fragment. J Neurosci 34(43):14210–14218PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF (2009) Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29(27):8805–8815PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dechant G, Barde Y-A (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5(11):1131–1136PubMedCrossRefGoogle Scholar
  67. 67.
    Chen Y, Zeng J, Cen L, Wang X, Yao G, Wang W, Qi W, Kong K (2009) Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res 37(2):281–288PubMedCrossRefGoogle Scholar
  68. 68.
    Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E (1995) The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem Sci 20(9):342–344PubMedCrossRefGoogle Scholar
  69. 69.
    Schliebs R (2005) Basal forebrain cholinergic dysfunction in Alzheimer’s disease–interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 30(6–7):895–908PubMedCrossRefGoogle Scholar
  70. 70.
    Yeo TT, Chua-Couzens J, Butcher LL, Bredesen DE, Cooper JD, Valletta JS, Mobley WC, Longo FM (1997) Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J Neurosci 17(20):7594–7605PubMedGoogle Scholar
  71. 71.
    Woolf NJ, Gould E, Butcher LL (1989) Nerve growth factor receptor is associated with cholinergic neurons of the basal forebrain but not the pontomesencephalon. Neuroscience 30(1):143–152PubMedCrossRefGoogle Scholar
  72. 72.
    Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arble BL, Stewart KB, Gilchrest BA (2002) Amyloid beta binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem 277(10):7720–7725PubMedCrossRefGoogle Scholar
  73. 73.
    Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ (2008) Beta-amyloid(1–42) induces neuronal death through the p75 neurotrophin receptor. J Neurosci 28(15):3941–3946PubMedCrossRefGoogle Scholar
  74. 74.
    Susen K, Blochl A (2005) Low concentrations of aggregated beta-amyloid induce neurite formation via the neurotrophin receptor p75. J Mol Med (Berl) 83(9):720–735CrossRefGoogle Scholar
  75. 75.
    Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1990) Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci U S A 87(15):5663–5666PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I (2003) Characterization of the toxic mechanism triggered by Alzheimer’s amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 73(5):627–636PubMedCrossRefGoogle Scholar
  77. 77.
    Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389(6653):865–870PubMedCrossRefGoogle Scholar
  78. 78.
    Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science (New York, NY) 274(5290):1194–1197CrossRefGoogle Scholar
  79. 79.
    Costantini C, Rossi F, Formaggio E, Bernardoni R, Cecconi D, Della-Bianca V (2005) Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in beta-amyloid peptide-dependent cell death. J Mol Neurosci 25(2):141–156PubMedCrossRefGoogle Scholar
  80. 80.
    Behrens MM, Strasser U, Koh JY, Gwag BJ, Choi DW (1999) Prevention of neuronal apoptosis by phorbol ester-induced activation of protein kinase C: blockade of p38 mitogen-activated protein kinase. Neuroscience 94(3):917–927PubMedCrossRefGoogle Scholar
  81. 81.
    Gu Z, Cheng J, Zhong P, Qin L, Liu W, Yan Z (2014) Abeta selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer’s disease. J Neurosci 34(41):13614–13628PubMedCrossRefGoogle Scholar
  82. 82.
    Hu Y, Lee X, Shao Z, Apicco D, Huang G, Gong BJ, Pepinsky RB, Mi S (2013) A DR6/p75(NTR) complex is responsible for beta-amyloid-induced cortical neuron death. Cell Death Dis 4:e579PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Luong K, Nguyen LT (2013) The role of beta-adrenergic receptor blockers in Alzheimer’s disease: potential genetic and cellular signaling mechanisms. Am J Alzheimers Dis Other Demen 28(5):427–439PubMedCrossRefGoogle Scholar
  84. 84.
    Ramos BP, Colgan LA, Nou E, Arnsten AF (2008) Beta2 adrenergic agonist, clenbuterol, enhances working memory performance in aging animals. Neurobiol Aging 29(7):1060–1069PubMedCrossRefGoogle Scholar
  85. 85.
    Ji JZ, Wang XM, Li BM (2003) Deficit in long-term contextual fear memory induced by blockade of beta-adrenoceptors in hippocampal CA1 region. Eur J Neurosci 17(9):1947–1952PubMedCrossRefGoogle Scholar
  86. 86.
    Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107(13):6058–6063PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60(3):337–341PubMedCrossRefGoogle Scholar
  88. 88.
    Haglund M, Sjobeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathol: Off J Jpn Soc Neuropathol 26(6):528–532CrossRefGoogle Scholar
  89. 89.
    Jardanhazi-Kurutz D, Kummer MP, Terwel D, Vogel K, Thiele A, Heneka MT (2011) Distinct adrenergic system changes and neuroinflammation in response to induced locus ceruleus degeneration in APP/PS1 transgenic mice. Neuroscience 176:396–407PubMedCrossRefGoogle Scholar
  90. 90.
    Yu JT, Tan L, Ou JR, Zhu JX, Liu K, Song JH, Sun YP (2008) Polymorphisms at the beta2-adrenergic receptor gene influence Alzheimer’s disease susceptibility. Brain Res 1210:216–222PubMedCrossRefGoogle Scholar
  91. 91.
    Shimohama S, Taniguchi T, Fujiwara M, Kameyama M (1987) Changes in beta-adrenergic receptor subtypes in Alzheimer-type dementia. J Neurochem 48(4):1215–1221PubMedCrossRefGoogle Scholar
  92. 92.
    Wang D, Govindaiah G, Liu R, De Arcangelis V, Cox CL, Xiang YK (2010) Binding of amyloid beta peptide to beta2 adrenergic receptor induces PKA-dependent AMPA receptor hyperactivity. FASEB J 24(9):3511–3521PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wang D, Yuen EY, Zhou Y, Yan Z, Xiang YK (2011) Amyloid beta peptide-(1–42) induces internalization and degradation of beta2 adrenergic receptors in prefrontal cortical neurons. J Biol Chem 286(36):31852–31863PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fujita H, Tanaka J, Maeda N, Sakanaka M (1998) Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neurosci Lett 242(1):37–40PubMedCrossRefGoogle Scholar
  95. 95.
    Wang QW, Rowan MJ, Anwyl R (2009) Inhibition of LTP by beta-amyloid is prevented by activation of beta2 adrenoceptors and stimulation of the cAMP/PKA signalling pathway. Neurobiol Aging 30(10):1608–1613PubMedCrossRefGoogle Scholar
  96. 96.
    Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896):1686–1689PubMedCrossRefGoogle Scholar
  97. 97.
    Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76(4):1501–1513PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Goritz C, Mauch DH, Nagler K, Pfrieger FW (2002) Role of glia-derived cholesterol in synaptogenesis: new revelations in the synapse-glia affair. J Physiol Paris 96(3–4):257–263PubMedCrossRefGoogle Scholar
  99. 99.
    LaDu MJ, Shah JA, Reardon CA, Getz GS, Bu G, Hu J, Guo L, van Eldik LJ (2000) Apolipoprotein E receptors mediate the effects of beta-amyloid on astrocyte cultures. J Biol Chem 275(43):33974–33980PubMedCrossRefGoogle Scholar
  100. 100.
    Hu J, LaDu MJ, Van Eldik LJ (1998) Apolipoprotein E attenuates beta-amyloid-induced astrocyte activation. J Neurochem 71(4):1626–1634PubMedCrossRefGoogle Scholar
  101. 101.
    Igbavboa U, Johnson-Anuna LN, Rossello X, Butterick TA, Sun GY, Wood WG (2006) Amyloid beta-protein1-42 increases cAMP and apolipoprotein E levels which are inhibited by beta1 and beta2-adrenergic receptor antagonists in mouse primary astrocytes. Neuroscience 142(3):655–660PubMedCrossRefGoogle Scholar
  102. 102.
    Wang D, Fu Q, Zhou Y, Xu B, Shi Q, Igwe B, Matt L, Hell JW, Wisely EV, Oddo S, Xiang YK (2013) beta2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J Biol Chem 288(15):10298–10307PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vitolo OV, Sant’Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A 99(20):13217–13221PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O (2004) Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest 114(11):1624–1634PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Martinez A, Soriano E (2005) Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Brain Res Rev 49(2):211–226PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang J, Hughes S (2006) Role of the ephrin and Eph receptor tyrosine kinase families in angiogenesis and development of the cardiovascular system. J Pathol 208(4):453–461PubMedCrossRefGoogle Scholar
  107. 107.
    Gerlai R (2001) Eph receptors and neural plasticity. Nat Rev Neurosci 2(3):205–209PubMedCrossRefGoogle Scholar
  108. 108.
    Murai KK, Pasquale EB (2004) Eph receptors, ephrins, and synaptic function. Neuroscientist 10(4):304–314PubMedCrossRefGoogle Scholar
  109. 109.
    Aoto J, Chen L (2007) Bidirectional ephrin/Eph signaling in synaptic functions. Brain Res 1184:72–80PubMedCrossRefGoogle Scholar
  110. 110.
    Simon AM, de Maturana RL, Ricobaraza A, Escribano L, Schiapparelli L, Cuadrado-Tejedor M, Perez-Mediavilla A, Avila J, Del Rio J, Frechilla D (2009) Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease. J Alzheimers Dis 17(4):773–786PubMedCrossRefGoogle Scholar
  111. 111.
    Kayser MS, McClelland AC, Hughes EG, Dalva MB (2006) Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci 26(47):12152–12164PubMedCrossRefGoogle Scholar
  112. 112.
    Murai KK, Pasquale EB (2003) ‘Eph’ective signaling: forward, reverse and crosstalk. J Cell Sci 116(Pt 14):2823–2832PubMedCrossRefGoogle Scholar
  113. 113.
    Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178(7):1295–1307PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB (2003) Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci 6(2):153–160PubMedCrossRefGoogle Scholar
  115. 115.
    Fu AK, Hung KW, Huang H, Gu S, Shen Y, Cheng EY, Ip FC, Huang X, Fu WY, Ip NY (2014) Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc Natl Acad Sci U S A. 275(8):5626–5632.Google Scholar
  116. 116.
    Kayser MS, Nolt MJ, Dalva MB (2008) EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59(1):56–69PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RDS, Nakayama M, Adams RH, Lloyd AC (2010) EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143(1):145–155PubMedCrossRefGoogle Scholar
  118. 118.
    Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295(5554):491–495PubMedCrossRefGoogle Scholar
  119. 119.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci: Off J So Neurosci 27(4):796–807CrossRefGoogle Scholar
  120. 120.
    Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089. doi: 10.1146/annurev.neuro.24.1.1071 PubMedCrossRefGoogle Scholar
  121. 121.
    Cisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, Ho K, Yu GQ, Mucke L (2011) Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469(7328):47–52PubMedCrossRefGoogle Scholar
  122. 122.
    Geng D, Kang L, Su Y, Jia J, Ma J, Li S, Du J, Cui H (2013) Protective effects of EphB2 on Abeta1-42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons. Neurochem Int 63(4):283–290PubMedCrossRefGoogle Scholar
  123. 123.
    Takai T (2005) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115(4):433–440PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science (New York, NY) 322(5903):967–970CrossRefGoogle Scholar
  125. 125.
    Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313(5794):1795–1800PubMedCrossRefGoogle Scholar
  126. 126.
    Wang X, Takata T, Bai X, Ou F, Yokono K, Sakurai T (2012) Pyruvate prevents the inhibition of the long-term potentiation induced by amyloid-beta through protein phosphatase 2A inactivation. J Alzheimers Dis 30(3):665–673PubMedGoogle Scholar
  127. 127.
    Kim T, Vidal GS, Djurisic M, William CM, Birnbaum ME, Garcia KC, Hyman BT, Shatz CJ (2013) Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 341(6152):1399–1404PubMedCrossRefGoogle Scholar
  128. 128.
    Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im I, Choi JW, Choi TY, Kim J, Song DK, Takai T, Kim YC, Kim KS, Choi SY, Choi S, Klein WL, Yuan J, Jung YK (2013) FcgammaRIIb mediates amyloid-beta neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Invest 123(7):2791–2802PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    William CM, Andermann ML, Goldey GJ, Roumis DK, Reid RC, Shatz CJ, Albers MW, Frosch MP, Hyman BT (2012) Synaptic plasticity defect following visual deprivation in Alzheimer’s disease model transgenic mice. J Neurosci 32(23):8004–8011PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Oleinik NV, Krupenko NI, Krupenko SA (2010) ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene 29(47):6233–6244PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875PubMedCrossRefGoogle Scholar
  132. 132.
    Katz HR (2002) Inhibitory receptors and allergy. Curr Opin Immunol 14(6):698–704PubMedCrossRefGoogle Scholar
  133. 133.
    Pritchard NR, Smith KG (2003) B cell inhibitory receptors and autoimmunity. Immunology 108(3):263–273PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Nakamura K, Hirai H, Torashima T, Miyazaki T, Tsurui H, Xiu Y, Ohtsuji M, Lin QS, Tsukamoto K, Nishimura H, Ono M, Watanabe M, Hirose S (2007) CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol Cell Biol 27(14):5128–5134PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Okun E, Mattson MP, Arumugam TV (2010) Involvement of Fc receptors in disorders of the central nervous system. Neuromol Med 12(2):164–178CrossRefGoogle Scholar
  136. 136.
    Peress NS, Fleit HB, Perillo E, Kuljis R, Pezzullo C (1993) Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol 48(1):71–79PubMedCrossRefGoogle Scholar
  137. 137.
    Song S, Kim SY, Hong YM, Jo DG, Lee JY, Shim SM, Chung CW, Seo SJ, Yoo YJ, Koh JY, Lee MC, Yates AJ, Ichijo H, Jung YK (2003) Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol Cell 12(3):553–563PubMedCrossRefGoogle Scholar
  138. 138.
    Song S, Lee H, Kam TI, Tai ML, Lee JY, Noh JY, Shim SM, Seo SJ, Kong YY, Nakagawa T, Chung CW, Choi DY, Oubrahim H, Jung YK (2008) E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity. J Cell Biol 182(4):675–684PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939PubMedCrossRefGoogle Scholar
  140. 140.
    Jacobsen L, Madsen P, Moestrup SK, Lund AH, Tommerup N, Nykjaer A, Sottrup-Jensen L, Gliemann J, Petersen CM (1996) Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J Biol Chem 271(49):31379–31383PubMedCrossRefGoogle Scholar
  141. 141.
    Yamazaki H, Bujo H, Kusunoki J, Seimiya K, Kanaki T, Morisaki N, Schneider WJ, Saito Y (1996) Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem 271(40):24761–24768PubMedCrossRefGoogle Scholar
  142. 142.
    Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Fuchtbauer EM, Fuchtbauer A, Holtzman DM, Takagi J, Willnow TE (2014) Lysosomal Sorting of Amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Sci Transl Med 6(223):223ra220CrossRefGoogle Scholar
  143. 143.
    Boucher P, Herz J (2011) Signaling through LRP1: protection from atherosclerosis and beyond. Biochem Pharmacol 81(1):1–5PubMedCrossRefGoogle Scholar
  144. 144.
    Andersen OM, Willnow TE (2006) Lipoprotein receptors in Alzheimer’s disease. Trends Neurosci 29(12):687–694PubMedCrossRefGoogle Scholar
  145. 145.
    Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann Neurol 37(2):211–217PubMedCrossRefGoogle Scholar
  146. 146.
    Marzolo MP, von Bernhardi R, Bu G, Inestrosa NC (2000) Expression of alpha(2)-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. J Neurosci Res 60(3):401–411PubMedCrossRefGoogle Scholar
  147. 147.
    Deane R, Sagare A, Zlokovic BV (2008) The role of the cell surface LRP and soluble LRP in blood-brain barrier Abeta clearance in Alzheimer’s disease. Curr Pharm Des 14(16):1601–1605PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU (2011) LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging 32 (12):2323 e2321–2311. doi:10.1016/j.neurobiolaging.2010.05.025Google Scholar
  149. 149.
    Ariga T, Kobayashi K, Hasegawa A, Kiso M, Ishida H, Miyatake T (2001) Characterization of high-affinity binding between gangliosides and amyloid beta-protein. Arch Biochem Biophys 388(2):225–230PubMedCrossRefGoogle Scholar
  150. 150.
    Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92(1):171–182PubMedCrossRefGoogle Scholar
  151. 151.
    Hong S, Ostaszewski BL, Yang T, O’Malley TT, Jin M, Yanagisawa K, Li S, Bartels T, Selkoe DJ (2014) Soluble Abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82(2):308–319PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7):949–955PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9(7):907–913PubMedCrossRefGoogle Scholar
  155. 155.
    Chen X, Walker DG, Schmidt AM, Arancio O, Lue LF, Yan SD (2007) RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Curr Mol Med 7(8):735–742PubMedCrossRefGoogle Scholar
  156. 156.
    Venkatasubramaniam A, Drude A, Good T (2014) Role of N-terminal residues in Abeta interactions with integrin receptor and cell surface. Biochim Biophys Acta 1838(10):2568–2577PubMedCrossRefGoogle Scholar
  157. 157.
    Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61(1):39–61PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Mori K, Ozaki E, Zhang B, Yang L, Yokoyama A, Takeda I, Maeda N, Sakanaka M, Tanaka J (2002) Effects of norepinephrine on rat cultured microglial cells that express alpha1, alpha2, beta1 and beta2 adrenergic receptors. Neuropharmacology 43(6):1026–1034PubMedCrossRefGoogle Scholar
  159. 159.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344PubMedCrossRefGoogle Scholar
  160. 160.
    Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ (2013) Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. Neuron 77(5):929–941PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Dohler F, Sepulveda-Falla D, Krasemann S, Altmeppen H, Schluter H, Hildebrand D, Zerr I, Matschke J, Glatzel M (2014) High molecular mass assemblies of amyloid-beta oligomers bind prion protein in patients with Alzheimer’s disease. Brain 137(Pt 3):873–886PubMedCrossRefGoogle Scholar
  162. 162.
    Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82(2):279–293PubMedCrossRefGoogle Scholar
  163. 163.
    Seo J, Giusti-Rodriguez P, Zhou Y, Rudenko A, Cho S, Ota KT, Park C, Patzke H, Madabhushi R, Pan L, Mungenast AE, Guan JS, Delalle I, Tsai LH (2014) Activity-dependent p25 generation regulates synaptic plasticity and Abeta-induced cognitive impairment. Cell 157(2):486–498PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Orr AL, Hanson JE, Li D, Klotz A, Wright S, Schenk D, Seubert P, Madison DV (2014) beta-Amyloid inhibits E-S potentiation through suppression of cannabinoid receptor 1-dependent synaptic disinhibition. Neuron 82(6):1334–1345PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysiologyThird Military Medical UniversityChongqingChina
  2. 2.Department of Sleep and PsychologyInstitute of Surgery Research, Daping Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations