Advertisement

Molecular Neurobiology

, Volume 53, Issue 1, pp 73–82 | Cite as

Protective Properties of Neural Extracellular Matrix

  • Anne Suttkus
  • Markus Morawski
  • Thomas Arendt
Article

Abstract

The extracellular matrix (ECM) of the central nervous system (CNS) occupies a large part of the neural tissue. It serves a variety of functions ranging from support of cell migration and regulating synaptic transmission and plasticity to the active modulation of the neural tissue after injury. In addition, evidence for neuroprotective properties of ECM components has accumulated more recently. In contrast to other connective tissues, the central nervous ECM is mainly composed of glycosaminoglycans, which can be present unbound in the form of hyaluronan or bound to proteins, thus forming proteoglycans. A subtype of this molecular family are the chondroitin sulphate proteoglycans (CSPGs), which are composed of a core protein that carries at least one covalently bound glycosaminoglycan side chain with a certain degree of sulphation. Several studies could show neuroprotective features of CSPGs against excitotoxicity, amyloid-ß toxicity, or oxidative stress. Recently, we could provide evidence for a neuroprotective function of a specialized form of ECM, the so-called perineuronal net ensheathing a subtype of neurons. Here, we will give an overview on recently emerging aspects of neuroprotective properties of CSPGs and perineuronal nets that might be relevant for our understanding on the distribution and progression of brain pathology and future perspectives toward modifying neurodegenerative diseases.

Keywords

Extracellular matrix Neuroprotection Oxidative stress Perineuronal nets Chondroitin sulphate 

Notes

Acknowledgments

This work was granted by the Faculty of Medicine of the University of Leipzig (grant Formel 1), the German Research Foundation MO 2249/2-1 within the PP 1608, and by the EU-COST Action BM1001 “Brain Extracellular Matrix in Health and Disease,” the European Union, the Free State of Saxony (grant number SAB 100154907), and the Alzheimer Forschungsinitiative e.V. (AFI #11861) to M. Morawski.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Vogt C, Vogt O (1951) Importance of neuroanatomy in the field of neuropathology. Neurology 1(3):205–218PubMedGoogle Scholar
  2. 2.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  3. 3.
    Garza-Manero S, Pichardo-Casas I, Arias C, Vaca L, Zepeda A (2013) Selective distribution and dynamic modulation of miRNAs in the synapse and its possible role in Alzheimer’s Disease. Brain Res. doi: 10.1016/j.brainres.2013.12.009 PubMedGoogle Scholar
  4. 4.
    Armstrong RA (2013) What causes alzheimer’s disease? Folia neuropathologica/Association of Polish Neuropathologists and Medical Research Centre. Pol Acad Sci 51(3):169–188Google Scholar
  5. 5.
    Ungar L, Altmann A, Greicius MD (2014) Apolipoprotein E, gender, and Alzheimer’s disease: an overlooked, but potent and promising interaction. Brain Imaging Behav 8(2):262–273. doi: 10.1007/s11682-013-9272-x PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Fairless R, Williams SK, Diem R (2013) Dysfunction of neuronal calcium signalling in neuroinflammation and neurodegeneration. Cell Tissue Res. doi: 10.1007/s00441-013-1758-8 PubMedGoogle Scholar
  7. 7.
    Paul S, Mahanta S (2014) Association of heat-shock proteins in various neurodegenerative disorders: is it a master key to open the therapeutic door? Mol Cell Biochem 386(1–2):45–61. doi: 10.1007/s11010-013-1844-y PubMedCrossRefGoogle Scholar
  8. 8.
    Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D (2013) Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013:309302. doi: 10.1155/2013/309302 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Kaushik DK, Basu A (2013) A friend in need may not be a friend indeed: role of microglia in neurodegenerative diseases. CNS Neurol Disord Drug Targets 12(6):726–740PubMedCrossRefGoogle Scholar
  10. 10.
    Novak U, Kaye AH (2000) Extracellular matrix and the brain: components and function. J Clin Neurosci 7(4):280–290. doi: 10.1054/jocn.1999.0212 PubMedCrossRefGoogle Scholar
  11. 11.
    Morris NP, Henderson Z (2000) Perineuronal nets ensheath fast spiking, parvalbumin-immunoreactive neurons in the medial septum/diagonal band complex. Eur J Neurosci 12(3):828–838PubMedCrossRefGoogle Scholar
  12. 12.
    Kalb RG, Hockfield S (1994) Electrical activity in the neuromuscular unit can influence the molecular development of motor neurons. Dev Biol 162(2):539–548. doi: 10.1006/dbio.1994.1107 PubMedCrossRefGoogle Scholar
  13. 13.
    Bandtlow CE, Zimmermann DR (2000) Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 80(4):1267–1290PubMedGoogle Scholar
  14. 14.
    Berardi N, Pizzorusso T, Maffei L (2004) Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 44(6):905–908. doi: 10.1016/j.neuron.2004.12.008 PubMedGoogle Scholar
  15. 15.
    Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298(5596):1248–1251. doi: 10.1126/science.1072699 PubMedCrossRefGoogle Scholar
  16. 16.
    Dityatev A, Schachner M (2006) The extracellular matrix and synapses. Cell Tissue Res 326(2):647–654. doi: 10.1007/s00441-006-0217-1 PubMedCrossRefGoogle Scholar
  17. 17.
    Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat Neurosci 12(7):897–904. doi: 10.1038/nn.2338 PubMedCrossRefGoogle Scholar
  18. 18.
    Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A (2011) Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur J Neurosci 33(12):2187–2202. doi: 10.1111/j.1460-9568.2011.07690.x PubMedCrossRefGoogle Scholar
  19. 19.
    Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW (2006) Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 281(26):17789–17800. doi: 10.1074/jbc.M600544200 PubMedCrossRefGoogle Scholar
  20. 20.
    Ida M, Shuo T, Hirano K, Tokita Y, Nakanishi K, Matsui F, Aono S, Fujita H, Fujiwara Y, Kaji T, Oohira A (2006) Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J Biol Chem 281(9):5982–5991. doi: 10.1074/jbc.M507130200 PubMedCrossRefGoogle Scholar
  21. 21.
    Canas N, Valero T, Villarroya M, Montell E, Verges J, Garcia AG, Lopez MG (2007) Chondroitin sulfate protects SH-SY5Y cells from oxidative stress by inducing heme oxygenase-1 via phosphatidylinositol 3-kinase/Akt. J Pharmacol Exp Ther 323(3):946–953. doi: 10.1124/jpet.107.123505 PubMedCrossRefGoogle Scholar
  22. 22.
    Okamoto M, Mori S, Endo H (1994) A protective action of chondroitin sulfate proteoglycans against neuronal cell death induced by glutamate. Brain Res 637(1–2):57–67PubMedCrossRefGoogle Scholar
  23. 23.
    Okamoto M, Mori S, Ichimura M, Endo H (1994) Chondroitin sulfate proteoglycans protect cultured rat’s cortical and hippocampal neurons from delayed cell death induced by excitatory amino acids. Neurosci Lett 172(1–2):51–54PubMedCrossRefGoogle Scholar
  24. 24.
    Suttkus A, Rohn S, Jäger C, Arendt T, Morawski M (2012) Neuroprotection against iron-induced cell death by perineuronal nets—an in vivo analysis of oxidative stress. Am J Neurodegener Dis 1(2):122–129PubMedPubMedCentralGoogle Scholar
  25. 25.
    Campo GM, D’Ascola A, Avenoso A, Campo S, Ferlazzo AM, Micali C, Zanghi L, Calatroni A (2004) Glycosaminoglycans reduce oxidative damage induced by copper (Cu+2), iron (Fe+2) and hydrogen peroxide (H2O2) in human fibroblast cultures. Glycoconj J 20(2):133–141. doi: 10.1023/B:GLYC.0000018587.67742.4b PubMedCrossRefGoogle Scholar
  26. 26.
    Suttkus A, Rohn S, Weigel S, Glockner P, Arendt T, Morawski M (2014) Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress. Cell Death Dis 5:e1119. doi: 10.1038/cddis.2014.25 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wu Y, Wu J, Lee DY, Yee A, Cao L, Zhang Y, Kiani C, Yang BB (2005) Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol J Int Soc Matrix Biol 24(1):3–13. doi: 10.1016/j.matbio.2004.11.007 CrossRefGoogle Scholar
  28. 28.
    Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54(1):1–18. doi: 10.1016/j.brainresrev.2006.09.006 PubMedCrossRefGoogle Scholar
  29. 29.
    Bartus K, James ND, Bosch KD, Bradbury EJ (2012) Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 235(1):5–17. doi: 10.1016/j.expneurol.2011.08.008 PubMedCrossRefGoogle Scholar
  30. 30.
    Properzi F, Asher RA, Fawcett JW (2003) Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury. Biochem Soc Trans 31(2):335–336. doi: 10.1042/BST0310335 PubMedCrossRefGoogle Scholar
  31. 31.
    Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R (2002) Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory. Mol Cell Biol 22(21):7417–7427PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Giamanco KA, Morawski M, Matthews RT (2010) Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170(4):1314–1327. doi: 10.1016/j.neuroscience.2010.08.032 PubMedCrossRefGoogle Scholar
  33. 33.
    Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S (2002) Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 22(17):7536–7547PubMedGoogle Scholar
  34. 34.
    Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 130(4):635–653. doi: 10.1007/s00418-008-0485-9 PubMedCrossRefGoogle Scholar
  35. 35.
    Spicer AP, Joo A, Bowling RA Jr (2003) A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links. J Biol Chem 278(23):21083–21091. doi: 10.1074/jbc.M213100200 PubMedCrossRefGoogle Scholar
  36. 36.
    Asher RA, Scheibe RJ, Keiser HD, Bignami A (1995) On the existence of a cartilage-like proteoglycan and link proteins in the central nervous system. Glia 13(4):294–308. doi: 10.1002/glia.440130406 PubMedCrossRefGoogle Scholar
  37. 37.
    Bekku Y, Saito M, Moser M, Fuchigami M, Maehara A, Nakayama M, Kusachi S, Ninomiya Y, Oohashi T (2011) Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum. J Comp Neurol 520(8):1721–1736. doi: 10.1002/cne.23009 CrossRefGoogle Scholar
  38. 38.
    Bekku Y, Su WD, Hirakawa S, Fassler R, Ohtsuka A, Kang JS, Sanders J, Murakami T, Ninomiya Y, Oohashi T (2003) Molecular cloning of Bral2, a novel brain-specific link protein, and immunohistochemical colocalization with brevican in perineuronal nets. Mol Cell Neurosci 24(1):148–159PubMedCrossRefGoogle Scholar
  39. 39.
    Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain 133(Pt 8):2331–2347. doi: 10.1093/brain/awq145 PubMedCrossRefGoogle Scholar
  40. 40.
    Bruckner G, Grosche J, Schmidt S, Hartig W, Margolis RU, Delpech B, Seidenbecher CI, Czaniera R, Schachner M (2000) Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J Comp Neurol 428(4):616–629. doi: 10.1002/1096-9861(20001225)428:4 PubMedCrossRefGoogle Scholar
  41. 41.
    Weber P, Bartsch U, Rasband MN, Czaniera R, Lang Y, Bluethmann H, Margolis RU, Levinson SR, Shrager P, Montag D, Schachner M (1999) Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J Neurosci 19(11):4245–4262PubMedGoogle Scholar
  42. 42.
    Hockfield S, Kalb RG, Zaremba S, Fryer H (1990) Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb Symp Quant Biol 55:505–514PubMedCrossRefGoogle Scholar
  43. 43.
    McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT (2007) Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci 27(20):5405–5413. doi: 10.1523/JNEUROSCI. 5425-06.2007 PubMedCrossRefGoogle Scholar
  44. 44.
    De Wit J, De Winter F, Klooster J, Verhaagen J (2005) Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix. Mol Cell Neurosci 29(1):40–55. doi: 10.1016/j.mcn.2004.12.009 PubMedCrossRefGoogle Scholar
  45. 45.
    Kantor DB, Chivatakarn O, Peer KL, Oster SF, Inatani M, Hansen MJ, Flanagan JG, Yamaguchi Y, Sretavan DW, Giger RJ, Kolodkin AL (2004) Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44(6):961–975. doi: 10.1016/j.neuron.2004.12.002 PubMedCrossRefGoogle Scholar
  46. 46.
    Vo T, Carulli D, Ehlert EM, Kwok JC, Dick G, Mecollari V, Moloney EB, Neufeld G, de Winter F, Fawcett JW, Verhaagen J (2013) The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain. Mol Cell Neurosci 56:186–200. doi: 10.1016/j.mcn.2013.04.009 PubMedCrossRefGoogle Scholar
  47. 47.
    Hartig W, Brauer K, Bigl V, Bruckner G (1994) Chondroitin sulfate proteoglycan-immunoreactivity of lectin-labeled perineuronal nets around parvalbumin-containing neurons. Brain Res 635(1–2):307–311PubMedCrossRefGoogle Scholar
  48. 48.
    Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations. Brain Res 842(1):15–29PubMedCrossRefGoogle Scholar
  49. 49.
    Wintergerst ES, Vogt Weisenhorn DM, Rathjen FG, Riederer BM, Lambert S, Celio MR (1996) Temporal and spatial appearance of the membrane cytoskeleton and perineuronal nets in the rat neocortex. Neurosci Lett 209(3):173–176PubMedCrossRefGoogle Scholar
  50. 50.
    Wintergerst ES, Faissner A, Celio MR (1996) The proteoglycan DSD-1-PG occurs in perineuronal nets around parvalbumin-immunoreactive interneurons of the rat cerebral cortex. Int J Dev Neurosci Off J Int Soc Dev Neurosci 14(3):249–255CrossRefGoogle Scholar
  51. 51.
    Reimers S, Hartlage-Rubsamen M, Bruckner G, Rossner S (2007) Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity. Eur J Neurosci 25(9):2640–2648. doi: 10.1111/j.1460-9568.2007.05514.x PubMedCrossRefGoogle Scholar
  52. 52.
    Bruckner G, Hausen D, Hartig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92(3):791–805PubMedCrossRefGoogle Scholar
  53. 53.
    Hartig W, Singer A, Grosche J, Brauer K, Ottersen OP, Bruckner G (2001) Perineuronal nets in the rat medial nucleus of the trapezoid body surround neurons immunoreactive for various amino acids, calcium-binding proteins and the potassium channel subunit Kv3.1b. Brain Res 899(1–2):123–133PubMedCrossRefGoogle Scholar
  54. 54.
    Miyata S, Nishimura Y, Nakashima T (2007) Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons. Brain Res 1150:200–206. doi: 10.1016/j.brainres.2007.02.066 PubMedCrossRefGoogle Scholar
  55. 55.
    Morawski M, Bruckner MK, Riederer P, Bruckner G, Arendt T (2004) Perineuronal nets potentially protect against oxidative stress. Exp Neurol 188(2):309–315. doi: 10.1016/j.expneurol.2004.04.017 PubMedCrossRefGoogle Scholar
  56. 56.
    Morawski M, Bruckner G, Jager C, Seeger G, Arendt T (2010) Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer’s disease. Neuroscience 169(3):1347–1363. doi: 10.1016/j.neuroscience.2010.05.022 PubMedCrossRefGoogle Scholar
  57. 57.
    Morawski M, Bruckner G, Jager C, Seeger G, Matthews RT, Arendt T (2012) Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer’s disease neuropathology. Brain Pathol 22(4):547–561. doi: 10.1111/j.1750-3639.2011.00557.x PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Morawski M, Filippov M, Tzinia A, Tsilibary E, Vargova L (2014) ECM in brain aging and dementia. Progress in brain research:in progressGoogle Scholar
  59. 59.
    Morawski M, Pavlica S, Seeger G, Grosche J, Kouznetsova E, Schliebs R, Bruckner G, Arendt T (2010) Perineuronal nets are largely unaffected in Alzheimer model Tg2576 mice. Neurobiol Aging 31(7):1254–1256. doi: 10.1016/j.neurobiolaging.2008.07.023 PubMedCrossRefGoogle Scholar
  60. 60.
    Lendvai D, Morawski M, Negyessy L, Gati G, Jager C, Baksa G, Glasz T, Attems J, Tanila H, Arendt T, Harkany T, Alpar A (2013) Neurochemical mapping of the human hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer’s disease. Acta Neuropathol 125(2):215–229. doi: 10.1007/s00401-012-1042-0 PubMedCrossRefGoogle Scholar
  61. 61.
    Beitz JM (2014) Parkinson’s disease: a review. Front Biosci 6:65–74CrossRefGoogle Scholar
  62. 62.
    Bruckner G, Morawski M, Arendt T (2008) Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit. Neuroscience 151(2):489–504. doi: 10.1016/j.neuroscience.2007.10.033 PubMedCrossRefGoogle Scholar
  63. 63.
    Belichenko PV, Miklossy J, Belser B, Budka H, Celio MR (1999) Early destruction of the extracellular matrix around parvalbumin-immunoreactive interneurons in Creutzfeldt-Jakob disease. Neurobiol Dis 6(4):269–279. doi: 10.1006/nbdi.1999.0245 PubMedCrossRefGoogle Scholar
  64. 64.
    Belichenko PV, Miklossy J, Celio MR (1997) HIV-I induced destruction of neocortical extracellular matrix components in AIDS victims. Neurobiol Dis 4(3–4):301–310. doi: 10.1006/nbdi.1997.0143 PubMedCrossRefGoogle Scholar
  65. 65.
    Vidal E, Bolea R, Tortosa R, Costa C, Domenech A, Monleon E, Vargas A, Badiola JJ, Pumarola M (2006) Assessment of calcium-binding proteins (Parvalbumin and Calbindin D-28K) and perineuronal nets in normal and scrapie-affected adult sheep brains. J Virol Methods 136(1–2):137–146. doi: 10.1016/j.jviromet.2006.05.008 PubMedCrossRefGoogle Scholar
  66. 66.
    Medina-Flores R, Wang G, Bissel SJ, Murphey-Corb M, Wiley CA (2004) Destruction of extracellular matrix proteoglycans is pervasive in simian retroviral neuroinfection. Neurobiol Dis 16(3):604–616. doi: 10.1016/j.nbd.2004.04.011 PubMedCrossRefGoogle Scholar
  67. 67.
    Sato Y, Nakanishi K, Tokita Y, Kakizawa H, Ida M, Maeda H, Matsui F, Aono S, Saito A, Kuroda Y, Hayakawa M, Kojima S, Oohira A (2008) A highly sulfated chondroitin sulfate preparation, CS-E, prevents excitatory amino acid-induced neuronal cell death. J Neurochem 104(6):1565–1576. doi: 10.1111/j.1471-4159.2007.05107.x PubMedCrossRefGoogle Scholar
  68. 68.
    Kim YS, Zhuang H, Koehler RC, Dore S (2005) Distinct protective mechanisms of HO-1 and HO-2 against hydroperoxide-induced cytotoxicity. Free Radic Biol Med 38(1):85–92. doi: 10.1016/j.freeradbiomed.2004.09.031 PubMedCrossRefGoogle Scholar
  69. 69.
    Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR (1996) Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res 37(1–2):201–208PubMedCrossRefGoogle Scholar
  70. 70.
    Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW (2006) Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol 290(5):C1399–C1410. doi: 10.1152/ajpcell.00386.2005 PubMedCrossRefGoogle Scholar
  71. 71.
    Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE (1993) beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 16(10):409–414PubMedCrossRefGoogle Scholar
  72. 72.
    Woods AG, Cribbs DH, Whittemore ER, Cotman CW (1995) Heparan sulfate and chondroitin sulfate glycosaminoglycan attenuate beta-amyloid(25–35) induced neurodegeneration in cultured hippocampal neurons. Brain Res 697(1–2):53–62PubMedCrossRefGoogle Scholar
  73. 73.
    Schuppel K, Brauer K, Hartig W, Grosche J, Earley B, Leonard BE, Bruckner G (2002) Perineuronal nets of extracellular matrix around hippocampal interneurons resist destruction by activated microglia in trimethyltin-treated rats. Brain Res 958(2):448–453PubMedCrossRefGoogle Scholar
  74. 74.
    Angelov DN, Walther M, Streppel M, Guntinas-Lichius O, Neiss WF, Probstmeier R, Pesheva P (1998) Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. J Neurosci 18(16):6218–6229PubMedGoogle Scholar
  75. 75.
    Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuenod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12(10):3721–3728PubMedCrossRefGoogle Scholar
  76. 76.
    Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol 14(1):123–130. doi: 10.1017/S1461145710000805 Google Scholar
  77. 77.
    Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, Do KQ (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A 110(22):9130–9135. doi: 10.1073/pnas.1300454110 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nowicka D, Soulsby S, Skangiel-Kramska J, Glazewski S (2009) Parvalbumin-containing neurons, perineuronal nets and experience-dependent plasticity in murine barrel cortex. Eur J Neurosci 30(11):2053–2063. doi: 10.1111/j.1460-9568.2009.06996.x PubMedCrossRefGoogle Scholar
  79. 79.
    Bruckner G, Brauer K, Hartig W, Wolff JR, Rickmann MJ, Derouiche A, Delpech B, Girard N, Oertel WH, Reichenbach A (1993) Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain. Glia 8(3):183–200. doi: 10.1002/glia.440080306 PubMedCrossRefGoogle Scholar
  80. 80.
    Morawski M, Reinert T, Brückner G, Wagner FE, Arendt TH, Tröger W (2004) The binding of iron to perineuronal nets: a combined nuclear microscopy and Mössbauer study. Hyperfine Interact 159(1–4):285–291. doi: 10.1007/s10751-005-9116-1 Google Scholar
  81. 81.
    Giamanco KA, Matthews RT (2012) Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix. Neuroscience 218:367–384. doi: 10.1016/j.neuroscience.2012.05.055 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Watanabe H, Nakata K, Kimata K, Nakanishi I, Yamada Y (1997) Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc Natl Acad Sci U S A 94(13):6943–6947PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Czipri M, Otto JM, Cs-Szabo G, Kamath RV, Vermes C, Firneisz G, Kolman KJ, Watanabe H, Li Y, Roughley PJ, Yamada Y, Olsen BR, Glant TT (2003) Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. J Biol Chem 278(40):39214–39223. doi: 10.1074/jbc.M303329200 PubMedCrossRefGoogle Scholar
  84. 84.
    Morawski M, Dityatev A, Hartlage-Rubsamen M, Blosa M, Holzer M, Flach K, Pavlica S, Dityateva G, Grosche J, Bruckner G, Schachner M (2014) Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan: insights from tenascin-R deficient neural cultures. Philosophical Transactions of The Royal Society B Biological Sciences, in pressGoogle Scholar
  85. 85.
    Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 204(1):33–48. doi: 10.1111/j.1469-7580.2004.00261.x PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332PubMedCrossRefGoogle Scholar
  87. 87.
    Xu JP, Zhao J, Li S (2011) Roles of NG2 glial cells in diseases of the central nervous system. Neurosci Bull 27(6):413–421. doi: 10.1007/s12264-011-1838-2 PubMedCrossRefGoogle Scholar
  88. 88.
    Akiyama H, Tooyama I, Kawamata T, Ikeda K, McGeer PL (1993) Morphological diversities of CD44 positive astrocytes in the cerebral cortex of normal subjects and patients with Alzheimer’s disease. Brain Res 632(1–2):249–259PubMedCrossRefGoogle Scholar
  89. 89.
    Uberti D, Cenini G, Bonini SA, Barcikowska M, Styczynska M, Szybinska A, Memo M (2010) Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients. Neurodegener Dis 7(1–3):143–147. doi: 10.1159/000289225 PubMedCrossRefGoogle Scholar
  90. 90.
    McCroskery S, Bailey A, Lin L, Daniels MP (2009) Transmembrane agrin regulates dendritic filopodia and synapse formation in mature hippocampal neuron cultures. Neuroscience 163(1):168–179. doi: 10.1016/j.neuroscience.2009.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    O’Callaghan P, Sandwall E, Li JP, Yu H, Ravid R, Guan ZZ, van Kuppevelt TH, Nilsson LN, Ingelsson M, Hyman BT, Kalimo H, Lindahl U, Lannfelt L, Zhang X (2008) Heparan sulfate accumulation with Abeta deposits in Alzheimer’s disease and Tg2576 mice is contributed by glial cells. Brain Pathol 18(4):548–561. doi: 10.1111/j.1750-3639.2008.00152.x PubMedPubMedCentralGoogle Scholar
  92. 92.
    Perry G, Siedlak SL, Richey P, Kawai M, Cras P, Kalaria RN, Galloway PG, Scardina JM, Cordell B, Greenberg BD et al (1991) Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer’s disease. J Neurosci 11(11):3679–3683PubMedGoogle Scholar
  93. 93.
    Snow AD, Kinsella MG, Parks E, Sekiguchi RT, Miller JD, Kimata K, Wight TN (1995) Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the beta-amyloid protein of Alzheimer’s disease. Arch Biochem Biophys 320(1):84–95. doi: 10.1006/abbi.1995.1345 PubMedCrossRefGoogle Scholar
  94. 94.
    Snow AD, Mar H, Nochlin D, Kresse H, Wight TN (1992) Peripheral distribution of dermatan sulfate proteoglycans (decorin) in amyloid-containing plaques and their presence in neurofibrillary tangles of Alzheimer’s disease. J Histochem Cytochem Off J Histochem Soc 40(1):105–113CrossRefGoogle Scholar
  95. 95.
    Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD (1997) Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer’s disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem 69(6):2452–2465PubMedCrossRefGoogle Scholar
  96. 96.
    Cotman SL, Halfter W, Cole GJ (2000) Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer’s disease brain. Mol Cell Neurosci 15(2):183–198. doi: 10.1006/mcne.1999.0816 PubMedCrossRefGoogle Scholar
  97. 97.
    Gupta-Bansal R, Frederickson RC, Brunden KR (1995) Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 270(31):18666–18671PubMedCrossRefGoogle Scholar
  98. 98.
    Kanekiyo T, Zhang J, Liu Q, Liu CC, Zhang L, Bu G (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J Neurosci 31(5):1644–1651. doi: 10.1523/JNEUROSCI. 5491-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhang X, Wang B, O’Callaghan P, Hjertstrom E, Jia J, Gong F, Zcharia E, Nilsson LN, Lannfelt L, Vlodavsky I, Lindahl U, Li JP (2012) Heparanase overexpression impairs inflammatory response and macrophage-mediated clearance of amyloid-beta in murine brain. Acta Neuropathol 124(4):465–478. doi: 10.1007/s00401-012-0997-1 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department for Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute for Brain ResearchUniversity of LeipzigLeipzigGermany

Personalised recommendations