Molecular Neurobiology

, Volume 53, Issue 1, pp 120–131 | Cite as

Intrathymic Tfh/B Cells Interaction Leads to Ectopic GCs Formation and Anti-AChR Antibody Production: Central Role in Triggering MG Occurrence

  • Xiaoyan Zhang
  • Shasha Liu
  • Ting Chang
  • Jiang Xu
  • Chunmei Zhang
  • Feng Tian
  • Yuanjie Sun
  • Chaojun Song
  • Wei Yi
  • Hong Lin
  • Zhuyi LiEmail author
  • Kun YangEmail author


Myasthenia gravis is a typical acetylcholine receptor (AChR) antibody-mediated autoimmune disease in which thymus frequently presents follicular hyperplasia or thymoma. It is now widely accepted that the thymus is probably the site of AChR autosensitization and autoantibody production. However, the exact mechanism that triggers intrathymic AChR antibody production is still unknown. T follicular helper cells, recently identified responsible for B cell maturation and antibody production in the secondary lymphoid organs, were involved in many autoimmune diseases. Newly studies found T follicular helper (Tfh) cells increased in the peripheral blood of myasthenia gravis (MG). Whether it appears in the thymus of MG and its role in the intrathymic B cells help and autoantibody production is unclear. Therefore, this study aims to determine in more detail whether Tfh/B cell interaction exist in MG thymus and to address its role in the ectopic germinal centers (GCs) formation and AChR antibody production. We observed the frequency of Tfh cells and its associated transcription factor Bcl-6, key cytokine IL-21 enhanced both in the thymocytes and peripheral blood mononuclear cells (PBMCs) of MG patients. In parallel, we also showed increased B cells and autoantibody titers in MG peripheral blood and thymus. Confocal microscope results demonstrated Tfh and B cells co-localized within the ectopic GCs in MG thymus, suggesting putative existence of Tfh/B cells interaction. In vitro studies further showed dynamic behavior of Tfh/B cells interaction and Tfh cells induced autoantibody secretion might through its effector cytokine IL-21. Altogether, our data demonstrated that intrathymic Tfh/B cells interaction played a key role in thymic ectopic GCs formation and anti-AChR antibody production, which might trigger MG occurrence.


Myasthenia gravis Follicular helper T cells Thymus Anti-acetylcholine receptor antibody Germinal centers 



This work has been supported by the National Natural Science Foundation of China (grants 31270952, 81171977, 81102217, and 31100620). We thank the Department of Thoracic surgery, Tangdu Hospital, and the Department of Cardiovascular Surgery, Xijing Hospital, for the provision of thymus specimen.


  1. 1.
    Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180(4088):871–872CrossRefPubMedGoogle Scholar
  2. 2.
    Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7(3):365–368CrossRefPubMedGoogle Scholar
  3. 3.
    Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69(2):418–422CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, Xiong WC, Lisak RP, Tzartos SJ, Mei L (2012) Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 69(4):445–451CrossRefPubMedGoogle Scholar
  5. 5.
    Marx A, Pfister F, Schalke B, Saruhan-Direskeneli G, Melms A, Strobel P (2013) The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 12(9):875–884CrossRefPubMedGoogle Scholar
  6. 6.
    Cavalcante P, Le Panse R, Berrih-Aknin S, Maggi L, Antozzi C, Baggi F, Bernasconi P, Mantegazza R (2011) The thymus in myasthenia gravis: site of “innate autoimmunity”? Muscle Nerve 44(4):467–484CrossRefPubMedGoogle Scholar
  7. 7.
    Spillane J, Hayward M, Hirsch NP, Taylor C, Kullmann DM, Howard RS (2013) Thymectomy: role in the treatment of myasthenia gravis. J Neurol 260(7):1798–1801CrossRefPubMedGoogle Scholar
  8. 8.
    Hohlfeld R, Wekerle H (2008) Reflections on the “intrathymic pathogenesis” of myasthenia gravis. J Neuroimmunol 201–202:21–27CrossRefPubMedGoogle Scholar
  9. 9.
    Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S (2006) Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 177(11):7868–7879CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Weiss JM, Cufi P, Bismuth J, Eymard B, Fadel E, Berrih-Aknin S, Le Panse R (2013) SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients. Immunobiology 218(3):373–381CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang M, Guo J, Li H, Zhou Y, Tian F, Gong L, Wang X, Li Z, Zhang W (2013) Expression of immune molecules CD25 and CXCL13 correlated with clinical severity of myasthenia gravis. J Mol Neurosci MN 50(2):317–323CrossRefPubMedGoogle Scholar
  12. 12.
    Berrih-Aknin SR, Raqheb S, Le Panse R, Lisak RP (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12:885–893CrossRefPubMedGoogle Scholar
  13. 13.
    Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, Dartevelle P, de Rosbo NK, Le Panse R (2009) CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol 66(4):521–531CrossRefPubMedGoogle Scholar
  14. 14.
    Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Tallaksen C et al (2006) The chemokine CXCL1 3 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cavalcante P, Cufi P, Mantegazza R, Berrih-Aknin S, Bernasconi P, Le Panse R (2013) Etiology of myasthenia gravis: innate immunity signature in pathological thymus. Autoimmun Rev 12(9):863–874CrossRefPubMedGoogle Scholar
  16. 16.
    Tangye SG, Ma CS, Brink R, Deenick EK (2013) The good, the bad and the ugly—TFH cells in human health and disease. Nat Rev Immunol 13(6):412–426CrossRefPubMedGoogle Scholar
  17. 17.
    Ma CS, Deenick EK (2014) Human T follicular helper (Tfh) cells and disease. Immunol Cell Biol 92(1):64–71CrossRefPubMedGoogle Scholar
  18. 18.
    Dong W, Zhu P, Wang Y, Wang Z (2011) Follicular helper T cells in systemic lupus erythematosus: a potential therapeutic target. Autoimmun Rev 10(6):299–304CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang X, Ing S, Fraser A, Chen M, Khan O, Zakem J, Davis W, Quinet R (2013) Follicular helper T cells: new insights into mechanisms of autoimmune diseases. Ochsner J 13(1):131–139PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang J, Shan Y, Jiang Z, Feng J, Li C, Ma L, Jiang Y (2013) High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin Exp Immunol 174(2):212–220PubMedPubMedCentralGoogle Scholar
  21. 21.
    Luo C, Li Y, Liu W, Feng H, Wang H, Huang X, Qiu L, Ouyang J (2013) Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J Neuroimmunol 256(1–2):55–61CrossRefPubMedGoogle Scholar
  22. 22.
    Saito R, Onodera H, Tago H, Suzuki Y, Shimizu M, Matsumura Y, Kondo T, Itoyama Y (2005) Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J Neuroimmunol 170(1–2):172–178CrossRefPubMedGoogle Scholar
  23. 23.
    Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg 70(1):327–334CrossRefPubMedGoogle Scholar
  24. 24.
    Lindstrom J (1977) An assay for antibodies to human acetylcholine receptor in serum from patients with myasthenia gravis. Clin Immunol Immunopathol 7(1):36–43CrossRefPubMedGoogle Scholar
  25. 25.
    Hunter WM, Greenwood FC (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495–496CrossRefPubMedGoogle Scholar
  26. 26.
    Yu D, Vinuesa CG (2010) The elusive identity of T follicular helper cells. Trends Immunol 31(10):377–383CrossRefPubMedGoogle Scholar
  27. 27.
    Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31(3):457–468CrossRefPubMedGoogle Scholar
  28. 28.
    Chen M, Guo Z, Ju W, Ryffel B, He X, Zheng SG (2012) The development and function of follicular helper T cells in immune responses. Cell Mol Immunol 9(5):375–379CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Asthana D, Fujii Y, Huston GE, Lindstrom J (1993) Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol 67(3 Pt 1):240–248CrossRefPubMedGoogle Scholar
  30. 30.
    Link J, Navikas V, Yu M, Fredrikson S, Osterman PO, Link H (1994) Augmented interferon-gamma, interleukin-4 and transforming growth factor-beta mRNA expression in blood mononuclear cells in myasthenia gravis. J Neuroimmunol 51(2):185–192CrossRefPubMedGoogle Scholar
  31. 31.
    Yi Q, Ahlberg R, Pirskanen R, Lefvert AK (1994) Acetylcholine receptor-reactive T cells in myasthenia gravis: evidence for the involvement of different subpopulations of T helper cells. J Neuroimmunol 50(2):177–186CrossRefPubMedGoogle Scholar
  32. 32.
    Wang ZY, Okita DK, Howard J Jr, Conti-Fine BM (1997) Th1 epitope repertoire on the alpha subunit of human muscle acetylcholine receptor in myasthenia gravis. Neurology 48(6):1643–1653CrossRefPubMedGoogle Scholar
  33. 33.
    Kopf M, Le Gros G, Coyle AJ, Kosco-Vilbois M, Brombacher F (1995) Immune responses of IL-4, IL-5, IL-6 deficient mice. Immunol Rev 148:45–69CrossRefPubMedGoogle Scholar
  34. 34.
    Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G, Foucat E, Dullaers M, Oh S, Sabzghabaei N, Lavecchio EM, Punaro M, Pascual V, Banchereau J, Ueno H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34(1):108–121CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6(3):205–217CrossRefPubMedGoogle Scholar
  36. 36.
    Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, Conti-Fine BM (2007) C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol 178(11):7072–7080CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Peters A, Lee Y, Kuchroo VK (2011) The many faces of Th17 cells. Curr Opin Immunol 23(6):702–706CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaoyan Zhang
    • 1
    • 2
    • 3
  • Shasha Liu
    • 1
    • 2
  • Ting Chang
    • 1
  • Jiang Xu
    • 1
  • Chunmei Zhang
    • 2
  • Feng Tian
    • 4
  • Yuanjie Sun
    • 2
  • Chaojun Song
    • 2
  • Wei Yi
    • 5
  • Hong Lin
    • 1
  • Zhuyi Li
    • 1
    Email author
  • Kun Yang
    • 2
    Email author
  1. 1.Department of NeurologyTangdu Hospital, The Fourth Military Medical UniversityXi’anChina
  2. 2.Department of ImmunologyThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of NeurologyLanzhou General Hospital, Lanzhou Command of CPLALanzhouChina
  4. 4.Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi’anChina
  5. 5.Department of Cardiovascular SurgeryXijing Hospital, The Fourth Military Medical UniversityXi’anChina

Personalised recommendations