Skip to main content

Advertisement

Log in

Neuroprotective Effects of β-Asarone Against 6-Hydroxy Dopamine-Induced Parkinsonism via JNK/Bcl-2/Beclin-1 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

β-asarone, a major component of Acorus tatarinowii Schott, has positive effects in neurodegeneration disease, however, its effect on the Parkinson’s disease (PD) remains unclear. In this study, the effects of β-asarone on behavioral tests, neurotransmitters, tyrosine hydroxylase (TH), and α-synuclein (α-syn) were investigated in 6-hydroxydopamine (6-OHDA) induced rats. Furthermore, the JNK/Bcl-2/Beclin-1 autophagy pathway was also studied. The results showed that β-asarone improved the behavioral symptoms of rats in the open field, rotarod test, initiation time, and stepping time. And it increased the HVA, Dopacl, and 5-HIAA levels in striatum but not the DA and 5-HT levels. After administration of β-asarone, the TH level was elevated but the α-syn was declined in rats. It inhibited the expressions of LC3-II, but increased the p62 expression in SN4741 cells. Moreover, it affected the expressions of Beclin-1, Bcl-2, JNK, and p-JNK in vivo. We deduced that β-asarone may firstly downregulate expressions of JNK and p-JNK, and then indirectly increase the expression of Bcl-2. And the function of Beclin-1 could be inhibited, which could inhibit autophagy activation. Collectively, all data indicated that β-asarone may be explored as a potential therapeutic agent in PD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chung KK, Dawson VL, Dawson TM (2003) New insights into Parkinson’s disease. J Neurol 250:15–24

    Article  Google Scholar 

  2. Li L, Wang X, Fei X, Xia L, Qin Z, Liang Z (2011) Parkinson’s disease involves autophagy and abnormal distribution of cathepsin L. Neurosci Lett 489:62–67

    Article  CAS  PubMed  Google Scholar 

  3. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  4. Trenti A, Grumati P, Cusinato F, Orso G, Bonaldo P, Trevisi L (2014) Cardiac glycoside ouabain induces autophagic cell death in non-small cell lung cancer cells via a JNK-dependent decrease of Bcl-2. Biochem Pharmacol 89:197–209

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu S, Konishi A, Nishida Y, Mizuta T, Nishina H, Yamamoto A, Tsujimoto Y (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29:2070–2082

    Article  CAS  PubMed  Google Scholar 

  6. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson C, Wolf CR, Gama MJ (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol Neurobiol 45:466–477

    Article  CAS  PubMed  Google Scholar 

  7. Chambers JW, Howard S, LoGrasso PV (2013) Blocking c-Jun N-terminal kinase (JNK) translocation to the mitochondria prevents 6-hydroxydopamine-induced toxicity in vitro and in vivo. J Biol Chem 288:1079–1087

    Article  CAS  PubMed  Google Scholar 

  8. Chambers JW, Pachori A, Howard S, Ganno M, Hansen D Jr, Kamenecka T, Song X, Duckett D, Chen W, Ling YY, Cherry L, Cameron MD, Lin L, Ruiz CH, Lograsso P (2011) Small molecule c-jun-N-terminal Kinase (JNK) inhibitors protect dopaminergic neurons in a model of Parkinson’s Disease. ACS Chem Neurosci 2:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan J, Qian J, Zhang Y, Ma J, Wang G, Xiao Q, Chen S, Ding J (2010) Small peptide inhibitor of JNKs protects against MPTP-induced nigral dopaminergic injury via inhibiting the JNK-signaling pathway. Lab Invest 90:156–167

    Article  CAS  PubMed  Google Scholar 

  10. Crocker CE, Khan S, Cameron MD, Robertson HA, Robertson GS, Lograsso P (2011) JNK inhibition protects dopamine neurons and provides behavioral improvement in a rat 6-hydroxydopamine model of Parkinson’s disease. ACS Chem Neurosci 2:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fang YQ, Shi C, Liu L, Fang RM (2012) Pharmacokinetics of beta-asarone in rabbit blood, hippocampus, cortex, brain stem, thalamus and cerebellum. Pharmazie 67:120–123

    CAS  PubMed  Google Scholar 

  12. Gang W, Yun-bo C, Dong-Feng C, Xiao-Ping L, Dong-Hui L, Ru-Dong D, Jian-Hong Z, Sai-Xia Z, Yi-Wei L, Hui L, Liu-Fang L, Qi W, Hui N (2013) β-asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AβPP/PS1 Mice. J Alzheimers Dis 33:863–880

    Google Scholar 

  13. Chengchong L, Guihua X, Miaoxian D, Li Z, Jiaming L, Gang W, Dejia Z, Rui W, Jicheng L, Yingcai N (2010) Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. Eur J Pharmacol 635:96–102

    Article  Google Scholar 

  14. Yutao G, Chengchong L, Jicheng L, Guihua X, Li Z, Miaoxian D, Xueyan L, Yingcai N (2010) Beta-Asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection Rats. Biol Pharm Bull 33:836–843

    Article  Google Scholar 

  15. De-Jia Z, Gang W, Ji-Cheng L, Miao-Xian D, Xiao-Ming L, Chun Z, Li Z, Rui W, Ying-Cai N (2011) Beta-asarone attenuates beta-amyloid-induced apoptosis through the inhibition of the activation of apoptosis signal-regulating kinase 1 in SH-SY5Y cells. Pharmazie 66:45–51

    Google Scholar 

  16. Zhiqiang L, Guoping Z, Sanqi Q, Zijun Y, Xiaoyin C, Jia C, Chuan C, Xue bing L, Jun G (2012) Cerebrovascular protection of β-asarone in Alzheimer’s disease rats: a behavioral, cerebral blood flow, biochemical and genic study. J Ethnopharmacol 144:305–312

    Article  Google Scholar 

  17. Chen Y, Wei G, Nie H, Lin Y, Tian H, Liu Y, Yu X, Cheng S, Yan R, Wang Q, Liu DH, Deng W, Lai Y, Zhou JH, Zhang SX, Lin WW, Chen DF (2014) β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res 1552:41–54

    Article  CAS  PubMed  Google Scholar 

  18. Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  19. Shin KY, Won BY, Heo C, Kim HJ, Jang DP, Park CH, Kim S, Kim HS, Kim YB, Lee HG, Lee SH, Cho ZH, Suh YH (2009) BT-11 improves stress-induced memory impairments through increment of glucose utilization and total neural cell adhesion molecule levels in rat brains. J Neurosci Res 87:260–268

    Article  CAS  PubMed  Google Scholar 

  20. Hennis MR, Seamans KW, Marvin MA, Casey BH, Goldberg MS (2013) Behavioral and neurotransmitter abnormalities in mice deficient for Parkin, DJ-1 and Superoxide Dismutase. Plos One 8:e84894

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olsson M, Nikkhah G, Bentlage C, Björklund A (1995) Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 15:3863–3875

    CAS  PubMed  Google Scholar 

  22. West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  23. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  CAS  PubMed  Google Scholar 

  24. He Y, Mo Z, Xue Z, Fang Y (2013) Establish a flow cytometric method for quantitative detection of Beclin-1 expression. Cytotechnology 65:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu L, Fang Y-Q, Xue Z-F, He Y-P, Fang R-M, Li L (2012) Beta-asarone attenuates ischemia-reperfusion-induced autophagy in rat brains via modulating JNK, p-JNK, Bcl-2 and Beclin 1. European J Pharmacol 680:34–40

    Article  CAS  Google Scholar 

  26. Anastasia A, Torre L, de Erausquin GA, Masco DH (2009) Enriched environment protects the nigrostriatal dopaminergic system and induces astroglial reaction in the 6-OHDA rat model of Parkinson’s disease. J Neurochem 109:755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bankiewicz KS, Sanchez-Pernaute R, Oiwa Y, Kohutnicka M, Cummins A, Eberling J (2001) Preclinical models of Parkinson’s disease. Curr Protoc Neurosci 9:9.4.1–9.4.32

    Google Scholar 

  28. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    Article  CAS  PubMed  Google Scholar 

  29. Carta M, Lindgren HS, Lundblad M, Stancampiano R, Fadda F, Cenci MA (2006) Role of striatal L-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J Neurochem 96:1718–1727

    Article  CAS  PubMed  Google Scholar 

  30. Morgese MG, Cassano T, Cuomo V, Giuffrida A (2007) Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson’s disease: role of CB(1) and TRPV1 receptors. Exp Neurol 208:110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yan JQ, Yuan YH, Gao YN, Huang JY, Ma KL, Gao Y, Zhang WQ, Guo XF, Chen NH (2014) Overexpression of human E46K mutant α-synuclein impairs macroautophagy via inactivation of JNK1-Bcl-2 pathway. Mol Neurobiol 50:685–701

    Article  CAS  PubMed  Google Scholar 

  32. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  CAS  PubMed  Google Scholar 

  33. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy- lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978

    Article  PubMed  Google Scholar 

  34. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283:23542–23556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia-Hong L, Jie-Qiong T, Sundara Kumar Durairajan S, Liang-Feng L, Zhuo-Hua Z, Long M, Han-Ming S, Edwin Chan HY, Min L (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of a-synuclein in neuronal cells via inducing autophagy. Autophagy 8:98–108

    Article  Google Scholar 

  37. Chen L-L, Song J-X, Lu J-H, Yuan Z-W, Liu L-F, Sundara Kumar Durairajan S, Li M (2014) Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. J Neuroimmune Pharmacol 9:380–387

    Article  PubMed  Google Scholar 

  38. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282:5641–5652

    Article  CAS  PubMed  Google Scholar 

  39. Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443:796–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009) Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. Plos One 4:e5515

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang Q, Mao Z (2009) The complexity in regulation of MEF2D by chaperone-mediated autophagy. Autophagy 5:1073–1074

    Article  PubMed  Google Scholar 

  42. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, RakicP FRA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:665–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 98:10433–10438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamenecka T, Jiang R, Song X, Duckett D, Chen W, Ling YY, Habel J, Laughlin JD, Chambers J, Figuera-Losada M, Cameron MD, Lin L, Ruiz CH, LoGrasso PV (2010) Synthesis, biological evaluation, X-ray structure, and pharmacokinetics of aminopyrimidine c-jun-N-terminal kinase (JNK) inhibitors. J Med Chem 53:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaudano E, Rosenblad C, Bjorklund A (2001) Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor. Eur J Neurosci 113:1–14

    Google Scholar 

  46. Pan J, Zhao YX, Wang ZQ, Jin L, Sun ZK, Chen SD (2007) Expression of FasL and its interaction with Fas are mediated by c-Jun N-terminal kinase pathway in 6-OHDA-induced rat model of Parkinson disease. Neurosci Lett 428:82–87

    Article  CAS  PubMed  Google Scholar 

  47. Ganguly A, Oo TF, Rzhetskaya M, Pratt R, Yarygina O, Momoi T, Kholodilov N, Burke RE (2004) CEP11004, a novel inhibitor of the mixed lineage kinases, suppresses apoptotic death in dopamine neurons of the substantia nigra induced by 6-hydroxydopamine. J Neurochem 88:469–480

    Article  CAS  PubMed  Google Scholar 

  48. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  CAS  PubMed  Google Scholar 

  49. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  50. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1 -mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ, Huang WL, Zeng YX, Zhu XF (2009) The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents induced autophagy in cancer cells. Oncogene 28:886–898

    Article  CAS  PubMed  Google Scholar 

  52. Park K-J, Lee S-H, Lee C-H, Jang J-Y, Chung J, Kwon M-H, Kim Y-S (2009) Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 382:726–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangdong Natural Science Foundation of China (No. S2012010010625) and the First Clinical Medical College of Guangzhou University of Chinese Medicine Excellent Doctoral Dissertation Cultivation Project (No. 201301).

Conflict of Interest

The authors do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qi Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gui, XH., Huang, LP. et al. Neuroprotective Effects of β-Asarone Against 6-Hydroxy Dopamine-Induced Parkinsonism via JNK/Bcl-2/Beclin-1 Pathway. Mol Neurobiol 53, 83–94 (2016). https://doi.org/10.1007/s12035-014-8950-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8950-z

Keywords

Navigation