Skip to main content

Corilagin Protects Against HSV1 Encephalitis Through Inhibiting the TLR2 Signaling Pathways In Vivo and In Vitro

Abstract

In this study, we tried to explore the molecular mechanism that Corilagin protected against herpes simplex virus-1 encephalitis through inhibiting the TLR2 signaling pathways in vivo and in vitro. As a result, Corilagin significantly prevented increase in the levels of TLR2 and its downstream mediators following Malp2 or HSV-1 challenge. On the other hand, in spite of TLR2 knockdown, Corilagin could still significantly suppress the expression of P38 and NEMO, phosphor-P38, and nuclear factor kappa B. The mRNA and protein expression of TLR2 and its downstream mediators in the brain tissue were also significantly lowered in mice treated with Corilagin. In addition, Corilagin inhibited expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 protein. In conclusion, Corilagin shows the potential to protect against HSV-1-induced encephalitis, and the beneficial effects may be mediated by inhibiting TLR2 signaling pathways.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Reference

  1. 1.

    James SH, Kimberlin DW, Whitley RJ (2009) Antiviral therapy for herpesvirus central nervous system infections: neonatal herpes simplex virus infection, herpes simplex encephalitis, and congenital cytomegalovirus infection. Antivir Res 83(3):207–213

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, Hinton DR, Kovats S, Nalcioglu O, Weinberg K, Openshaw H (2008) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82(14):7078–7088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Conrady CD, Drevets DA, Carr DJ (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 220(1):1–9

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Guo Y-J, Zhao L, Li X-F, Mei Y-W, Zhang S-L, Tao J-Y, Zhou Y, Dong J-H (2010) Effect of Corilagin on anti-inflammation in HSV-1 encephalitis and HSV-1 infected microglias. Eur J Pharmacol 635(1):79–86

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Blasius AL, Beutler B (2010) Intracellular Toll-like receptors. Immunity 32(3):305–315

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kielian T (2006) Toll‐like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83(5):711–730

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Morrison LA (2004) The toll of herpes simplex virus infection. Trends Microbiol 12(8):353–356

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shen Z-Q, Dong Z-J, Peng H, Liu J-K (2004) Modulation of PAI-1 and tPA activity and thrombolytic effects of Corilagin. Planta Med 69(12):1109–1112

    Google Scholar 

  12. 12.

    DUAN W, YU Y, ZHANG L (2005) Antiatherogenic effects of Phyllanthus emblica associated with Corilagin and its analogue. Yakugaku Zasshi 125(7):587–591

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y (2007) Antioxidant and hepatoprotective actions of medicinal herb,< i > Terminalia catappa</i > L. from Okinawa Island and its tannin Corilagin. Phytomedicine 14(11):755–762

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Jin F, Cheng D, Tao J-Y, Zhang S-L, Pang R, Guo Y-J, Ye P, Dong J-H, Zhao L (2013) Anti-inflammatory and anti-oxidative effects of Corilagin in a rat model of acute cholestasis. BMC Gastroenterol 13(1):79

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cheng J-T, Lin T-C, Hsu F-L (1995) Antihypertensive effect of Corilagin in the rat. Can J Physiol Pharmacol 73(10):1425–1429

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Shiota S, Shimizu M, Ji S, Morita Y, Mizushima T, Tsuchiya T (2004) Mechanisms of action of Corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol 48(1):67

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, Yu Y (2013) A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Alternat Med 13(1):33

    CAS  Article  Google Scholar 

  18. 18.

    Huang YF, Zhang SL, Jin F, Cheng D, Zhou YP, Li HR, Tang ZM, Xue J, Cai W, Dong JH, Zhao L (2013) Activity of Corilagin on post-parasiticide liver fibrosis in schistosomiasis animal model. Int J Immunopathol Pharmacol 26(1):85–92

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    OKABE S, SUGANUMA M, IMAYOSHI Y, TANIGUCHI S, YOSHIDA T, FUJIKI H (2001) New TNF-ALPHA. Releasing inhibitors, Geraniin and Corilagin, in leaves of Acer nikoense, Megusurino-ki. Biol Pharm Bull 24(10):1145–1148

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Gambari R, Borgatti M, Lampronti I, Fabbri E, Brognara E, Bianchi N, Piccagli L, Yuen MC-W, Kan C-W, Hau DK-P (2012) Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. Int Immunopharmacol

  21. 21.

    Zhao L, Zhang S-L, Tao J-Y, Pang R, Jin F, Guo Y-J, Dong J-H, Ye P, Zhao H-Y, Zheng G-H (2008) Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in Vitro. Int Immunopharmacol 8(7):1059–1064

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2008) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26(2):83–94

    Google Scholar 

  23. 23.

    Okusawa T, Fujita M, J-i N, Into T, Yasuda M, Yoshimura A, Hara Y, Hasebe A, Golenbock DT, Morita M (2004) Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by Toll-like receptors 2 and 6. Infect Immun 72(3):1657–1665

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Guo G-z, Geng Y-j, Huang D-n, Xue C-f, Zhang R-l (2010) Level of CYP4G19 expression is associated with pyrethroid resistance in Blattella germanica. J Parasitol Res 2010

  26. 26.

    Lokensgard JR, Hu S, Sheng W, Vanoijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF a, IL-1 ß, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neurovirol 7(3):208–219

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Marques CP, Hu S, Sheng W, Lokensgard JR (2006) Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res 121(1):1–10

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Stone MJ, Hawkins CP (2007) A medical overview of encephalitis. Neuropsychol Rehabil 17(4–5):429–449

    Article  PubMed  Google Scholar 

  29. 29.

    Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    van Lint AL, Murawski MR, Goodbody RE, Severa M, Fitzgerald KA, Finberg RW, Knipe DM, Kurt-Jones EA (2010) Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-κB signaling. J Virol 84(20):10802–10811

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schachtele SJ, Hu S, Little MR, Lokensgard JR (2010) Research herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

  33. 33.

    Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101(5):1315–1320

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sarangi PP, Kim B, Kurt-Jones E, Rouse BT (2007) Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 81(20):11128–11138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Cai M, Li M, Wang K, Wang S, Lu Q, Yan J, Mossman KL, Lin R, Zheng C (2013) The herpes Simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS One 8(1):e54586

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Ono K, Han J (2000) The p38 signal transduction pathway activation and function. Cell Signal 12(1):1–13

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Kwok S-K, Cho M-L, Her Y-M, Oh H-J, Park M-K, Lee S-Y, Woo YJ, Ju JH, Park K-S, Kim H-Y (2012) TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome. Arthritis Res Ther 14:R64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Mühlradt PF, Akira S (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2-and MyD88-dependent signaling pathway. J Immunol 164(2):554–557

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Barrenschee M, Lex D, Uhlig S (2010) Effects of the TLR2 agonists MALP-2 and Pam3Cys in isolated mouse lungs. PLoS One 5(11):e13889

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Deglon N, Aebischer P (2002) Lentiviruses as vectors for CNS diseases. In: Lentiviral vectors. Springer, pp 191–209

  41. 41.

    Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2(9):835–841

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T (2002) Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420(6913):324–329

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21(1):335–376

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A (2009) MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2-and TLR4-mediated NF-κB proinflammatory responses. J Biol Chem 284(36):24192–24203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103(4):1433–1437

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Tegethoff S, Behlke J, Scheidereit C (2003) Tetrameric oligomerization of IκB kinase γ (IKKγ) is obligatory for IKK complex activity and NF-κB activation. Mol Cell Biol 23(6):2029–2041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Israël A (2010) The IKK complex, a central regulator of NF-κB activation. Cold Spring Harbor perspectives in biology 2 (3)

  48. 48.

    Tripathi P, Aggarwal A (2006) NF-kB transcription factor: a key player in the generation of immune response. Curr Sci 90(4):519–531

    CAS  Google Scholar 

  49. 49.

    Lee MS, Kim Y-J (2007) Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem 76:447–480

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Vasselon T, Hanlon WA, Wright SD, Detmers PA (2002) Toll-like receptor 2 (TLR2) mediates activation of stress-activated MAP kinase p38. J Leukoc Biol 71(3):503–510

    CAS  PubMed  Google Scholar 

  51. 51.

    Dong XR, Luo M, Fan L, Zhang T, Liu L, Dong JH, Wu G (2010) Corilagin inhibits the double strand break-triggered NF-kappaB pathway in irradiated microglial cells. Int J Mol Med 25(4):531–536

    CAS  PubMed  Google Scholar 

  52. 52.

    Li XF, Guo YJ, Zhang DM, Chen Z, Wei X, Li YH, Zhang SL, Tao JY, Dong JH, Mei YW, Li LL, Zhao L (2012) Protective activity of the ethanol extract of Cynanchum paniculatum (BUNGE) Kitagawa on treating herpes simplex encephalitis. Int J Immunopathol Pharmacol 25(1):259–266

    Article  PubMed  Google Scholar 

  53. 53.

    Li XF, Guo YJ, Wang ML, Zhang DM, Li YH, Wang YF, Tao JY, Zhang SL, Dong JH, Li LL, Zhao L (2011) Inducing-apoptotic activity of the ethanol extract of Duchesnea indica Focke on treatment of herpes simplex encephalitis. Int J Immunopathol Pharmacol 24(3):631–638

    Article  PubMed  Google Scholar 

  54. 54.

    Klein RS, Hirsch MS (2009) Herpes simplex virus type 1 encephalitis. UpToDate:1–17

  55. 55.

    Venturini E, Chiappini E, Fonda C, Galli L, de Martino M (2013) Herpes simplex encephalitis with occipital localization in an infant: a different route of entry in the brain system? Pediatr Neurol 48(6):463–465

    Article  PubMed  Google Scholar 

  56. 56.

    Wilson SS, Fakioglu E, Herold BC (2009) Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti-Infect Ther 7(5):559–568

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study is sponsored by China National Natural Science Fund No. 81100894, No. 81371840, and No. 30901248.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Additional information

Yuan-Jin Guo and Tao Luo contributed equally to this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, YJ., Luo, T., Wu, F. et al. Corilagin Protects Against HSV1 Encephalitis Through Inhibiting the TLR2 Signaling Pathways In Vivo and In Vitro. Mol Neurobiol 52, 1547–1560 (2015). https://doi.org/10.1007/s12035-014-8947-7

Download citation

Keywords

  • Corilagin
  • Inflammation
  • Toll-like receptor 2
  • Signaling pathways
  • Herpes simplex virus-1