Skip to main content

Advertisement

Log in

PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Regulatory mechanisms of the expression of interleukin-10 (IL-10) in brain inflammatory conditions remain elusive. To address this issue, we used multiple primary brain cell cultures to study the expression of IL-10 in lipopolysaccharide (LPS)-elicited inflammatory conditions. In neuron–glia cultures, LPS triggered well-orchestrated expression of various immune factors in the following order: tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and lastly IL-10, and these inflammatory mediators were mainly produced from microglia. While exogenous application of individual earlier-released pro-inflammatory factors (e.g., TNF-α, IL-1β, or PGE2) failed to induce IL-10 expression, removal of LPS from the cultures showed the requirement of continuing presence of LPS for IL-10 expression. Interestingly, genetic disruption of tnf-α, its receptors tnf-r1/r2, and cox-2 and pharmacological inhibition of COX-2 activity enhanced LPS-induced IL-10 production in microglia, which suggests negative regulation of IL-10 induction by the earlier-released TNF-α and PGE2. Further studies showed that negative regulation of IL-10 production by TNF-α is mediated by PGE2. Mechanistic studies indicated that PGE2-elicited suppression of IL-10 induction was eliminated by genetic disruption of the PGE2 receptor EP2 and was mimicked by the specific agonist for the EP2, butaprost, but not agonists for the other three EP receptors. Inhibition of cAMP-dependent signal transduction failed to affect PGE2-mediated inhibition of IL-10 production, suggesting that a G protein-independent pathway was involved. Indeed, deficiency in β-arrestin-1 or β-arrestin-2 abolished PGE2-elicited suppression of IL-10 production. In conclusion, we have demonstrated that COX-2-derived PGE2 inhibits IL-10 expression in brain microglia through a novel EP2- and β-arrestin-dependent signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19(8):331–338

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. doi:10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  3. Nathan C (2002) Points of control in inflammation. Nature 420(6917):846–852. doi:10.1038/nature01320

    Article  CAS  PubMed  Google Scholar 

  4. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83(5):711–730. doi:10.1002/jnr.20767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8(5):349–361. doi:10.1038/nri2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29(8):357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462. doi:10.1002/glia.20467

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47. doi:10.1186/1750-1326-4-47

    Article  PubMed  PubMed Central  Google Scholar 

  9. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG, Dantzer R, Kelley KW (2001) Interleukin-10 in the brain. Crit Rev Immunol 21(5):427–449

    Article  CAS  PubMed  Google Scholar 

  10. Saraiva M, O'Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181. doi:10.1038/nri2711

    Article  CAS  PubMed  Google Scholar 

  11. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75(2):263–274

    Article  CAS  PubMed  Google Scholar 

  12. Heyen JR, Ye S, Finck BN, Johnson RW (2000) Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-kappaB. Brain Res Mol Brain Res 77(1):138–147

    Article  CAS  PubMed  Google Scholar 

  13. Kremlev SG, Palmer C (2005) Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 162(1–2):71–80. doi:10.1016/j.jneuroim.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  14. Sabat R, Grutz G, Warszawska K, Kirsch S, Witte E, Wolk K, Geginat J (2010) Biology of interleukin-10. Cytokine Growth Factor Rev 21(5):331–344. doi:10.1016/j.cytogfr.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  15. Qian L, Block ML, Wei SJ, Lin CF, Reece J, Pang H, Wilson B, Hong JS, Flood PM (2006) Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase. J Pharmacol Exp Ther 319(1):44–52. doi:10.1124/jpet.106.106351

    Article  CAS  PubMed  Google Scholar 

  16. Sheng WS, Hu S, Kravitz FH, Peterson PK, Chao CC (1995) Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin Diagn Lab Immunol 2(5):604–608

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Foey AD, Parry SL, Williams LM, Feldmann M, Foxwell BM, Brennan FM (1998) Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNF-alpha: role of the p38 and p42/44 mitogen-activated protein kinases. J Immunol 160(2):920–928

    CAS  PubMed  Google Scholar 

  18. Tone M, Powell MJ, Tone Y, Thompson SA, Waldmann H (2000) IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3. J Immunol 165(1):286–291

    Article  CAS  PubMed  Google Scholar 

  19. Platzer C, Meisel C, Vogt K, Platzer M, Volk HD (1995) Up-regulation of monocytic IL-10 by tumor necrosis factor-alpha and cAMP elevating drugs. Int Immunol 7(4):517–523

    Article  CAS  PubMed  Google Scholar 

  20. Harizi H, Gualde N (2006) Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators. Cell Mol Immunol 3(4):271–277

    CAS  PubMed  Google Scholar 

  21. Aloisi F, De Simone R, Columba-Cabezas S, Levi G (1999) Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res 56(6):571–580

    Article  CAS  PubMed  Google Scholar 

  22. Seo DR, Kim KY, Lee YB (2004) Interleukin-10 expression in lipopolysaccharide-activated microglia is mediated by extracellular ATP in an autocrine fashion. Neuroreport 15(7):1157–1161

    Article  CAS  PubMed  Google Scholar 

  23. Cheon H, Rho YH, Choi SJ, Lee YH, Song GG, Sohn J, Won NH, Ji JD (2006) Prostaglandin E2 augments IL-10 signaling and function. J Immunol 177(2):1092–1100

    Article  CAS  PubMed  Google Scholar 

  24. Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, Han J, Silverstein R, Selleri L, Ma X (2007) Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27(6):952–964. doi:10.1016/j.immuni.2007.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koscso B, Csoka B, Kokai E, Nemeth ZH, Pacher P, Virag L, Leibovich SJ, Hasko G (2013) Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J Leukoc Biol. doi:10.1189/jlb.0113043

    PubMed  PubMed Central  Google Scholar 

  26. Chang EY, Guo B, Doyle SE, Cheng G (2007) Cutting edge: involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J Immunol 178(11):6705–6709

    Article  CAS  PubMed  Google Scholar 

  27. Quan Y, Jiang J, Dingledine R (2013) EP2 receptor signaling pathways regulate classical activation of microglia. J Biol Chem 288(13):9293–9302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ, McClanahan TK, McKenzie BS, Kastelein RA, Cua DJ, de Waal MR (2009) Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp Med 206(3):535–548. doi:10.1084/jem.20082293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chun KS, Lao HC, Langenbach R (2010) The prostaglandin E2 receptor, EP2, stimulates keratinocyte proliferation in mouse skin by G protein-dependent and {beta}-arrestin1-dependent signaling pathways. J Biol Chem 285(51):39672–39681. doi:10.1074/jbc.M110.117689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trivedi DB, Loftin CD, Clark J, Myers P, DeGraff LM, Cheng J, Zeldin DC, Langenbach R (2013) Beta-arrestin-2 deficiency attenuates abdominal aortic aneurysm formation in mice. Circ Res 112(9):1219–1229. doi:10.1161/CIRCRESAHA.112.280399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen SH, Oyarzabal EA, Hong JS (2013) Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia. Methods Mol Biol 1041:231–240. doi:10.1007/978-1-62703-520-0_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang SC, Fedoroff S (1996) Neuron-microglia interactions in vitro. Acta Neuropathol 91(4):385–395

    Article  CAS  PubMed  Google Scholar 

  33. Gebicke-Haerter PJ, Bauer J, Schobert A, Northoff H (1989) Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J Neurosci Off J Soc Neurosci 9(1):183–194

    CAS  Google Scholar 

  34. Kambayashi Y, Takekoshi S, Tanino Y, Watanabe K, Nakano M, Hitomi Y, Takigawa T, Ogino K, Yamamoto Y (2007) Various molecular species of diacylglycerol hydroperoxide activate human neutrophils via PKC activation. J Clin Biochem Nutr 41(1):68–75. doi:10.3164/jcbn.2007009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karlsson A, Nixon JB, McPhail LC (2000) Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. J Leukoc Biol 67(3):396–404

    CAS  PubMed  Google Scholar 

  36. Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33(9):960–967

    Article  CAS  PubMed  Google Scholar 

  37. Csoka B, Nemeth ZH, Virag L, Gergely P, Leibovich SJ, Pacher P, Sun CX, Blackburn MR, Vizi ES, Deitch EA, Hasko G (2007) A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110(7):2685–2695. doi:10.1182/blood-2007-01-065870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong KF, Luk JM, Cheng RH, Klickstein LB, Fan ST (2007) Characterization of two novel LPS-binding sites in leukocyte integrin beta A domain. FASEB J 21(12):3231–3239. doi:10.1096/fj.06-7579com

    Article  CAS  PubMed  Google Scholar 

  39. Eissner G, Kirchner S, Lindner H, Kolch W, Janosch P, Grell M, Scheurich P, Andreesen R, Holler E (2000) Reverse signaling through transmembrane TNF confers resistance to lipopolysaccharide in human monocytes and macrophages. J Immunol 164(12):6193–6198

    Article  CAS  PubMed  Google Scholar 

  40. Kalinski P (2012) Regulation of immune responses by prostaglandin E2. J Immunol 188(1):21–28. doi:10.4049/jimmunol.1101029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517. doi:10.1126/science.1109237

    Article  CAS  PubMed  Google Scholar 

  42. Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L (2003) Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine. Neuroscience 117(2):383–389

    Article  CAS  PubMed  Google Scholar 

  43. Qian L, Wu HM, Chen SH, Zhang D, Ali SF, Peterson L, Wilson B, Lu RB, Hong JS, Flood PM (2011) Beta2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J Immunol 186(7):4443–4454. doi:10.4049/jimmunol.1002449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Straccia M, Gresa-Arribas N, Dentesano G, Ejarque-Ortiz A, Tusell JM, Serratosa J, Sola C, Saura J (2011) Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein beta. J Neuroinflammation 8:156. doi:10.1186/1742-2094-8-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Biswas SK, Lopez-Collazo E (2009) Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 30(10):475–487. doi:10.1016/j.it.2009.07.009

    Article  CAS  PubMed  Google Scholar 

  46. Shirai Y, Hashimoto M, Kato R, Kawamura YI, Kirikae T, Yano H, Takashima J, Kirihara Y, Saito Y, Fujino MA, Dohi T (2004) Lipopolysaccharide induces CD25-positive, IL-10-producing lymphocytes without secretion of proinflammatory cytokines in the human colon: low MD-2 mRNA expression in colonic macrophages. J Clin Immunol 24(1):42–52. doi:10.1023/B:JOCI.0000018062.01980.ba

    Article  CAS  PubMed  Google Scholar 

  47. Johansson JU, Pradhan S, Lokteva LA, Woodling NS, Ko N, Brown HD, Wang Q, Loh C, Cekanaviciute E, Buckwalter M, Manning-Bog AB, Andreasson KI (2013) Suppression of inflammation with conditional deletion of the prostaglandin E2 EP2 receptor in macrophages and brain microglia. J Neurosci Off J Soc Neurosci 33(40):16016–16032. doi:10.1523/JNEUROSCI.2203-13.2013

    Article  CAS  Google Scholar 

  48. Chun KS, Lao HC, Trempus CS, Okada M, Langenbach R (2009) The prostaglandin receptor EP2 activates multiple signaling pathways and beta-arrestin1 complex formation during mouse skin papilloma development. Carcinogenesis 30(9):1620–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yun SP, Ryu JM, Jang MW, Han HJ (2011) Interaction of profilin-1 and F-actin via a beta-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 226(2):559–571. doi:10.1002/jcp.22366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the NIH/NIEHS (ES090082; ES025043), the National Natural Science Foundation of China, and the award to high-level innovative and entrepreneurial talents of Jiangsu Province of China. We thank Anthony Lockhart for the assistance with animal colony management and maintenance of the timed pregnant mice.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huiming Gao or Ru-Band Lu.

Additional information

Chun-Hsien Chu and Shih-Heng Chen contributed equally to this paper.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Effects of polymyxin B on neuron-glia cultures treated with LPS. A. Immunostaining of neuron-glia cells treated with LPS (15 ng/ml) and polymyxin B (10 μg/ml) at 48 hours using anti-Iba-1 antibody. Iba-1 served as a microglia marker. B. [3H] dopamine uptake of neuron-glia cells treated with LPS (15 ng/ml) and polymyxin B (10 μg/ml) at 7 days. Results of dopamine uptake were represented as percentage of vehicle-treated control cultures. Data were expressed as means ± SEM from three independent experiments run in triplicate. *, p < 0.05, compared with corresponding vehicle-treated control cultures. #, p < 0.05, compared with corresponding LPS-treated cultures. Magnification: 200X (GIF 71 kb)

High resolution image (TIFF 774 kb)

Supplemental Fig. 2

Both TLR4 and Mac-1 receptors participate in induction of IL-10 by LPS. Mixed-glia cultures from wildtype (FeJ) and TLR4-deficient (HeJ) mice (A) or from wildtype and Mac-1-deficient mice (B) were treated with LPS (15 ng/ml). IL-10 production in the supernatant of these cells was measured at 48 hours following LPS treatment by ELISA. Results are shown as the mean ± SEM from 3 independent experiments. *, p < 0.05, compared with vehicle-treated control cultures. #, p < 0.05, compared with corresponding LPS-treated wildtype cultures. C. LPS induces IL-10 production through MAPK and NF-κB signaling pathways. Neuron-glia cultures were pre-treated with a variety of protein kinase inhibitors including SP6000125 (5 μM; for JNK), SB203580 (1 μM; for p38), U0126 (10 μM; for ERK), Bay 11-7821 (10 μM; for NF-κB), Rp-cAMPs (10 μM; for PKA) and Calphostin C (1 μM; for PKC) for 1 hour, and then exposure to LPS (15 ng/ml). IL-10 production in the supernatant of these cells was measured at 48 hours following LPS treatment by ELISA. Results are represented as percentage of LPS-treated group and shown as the mean ± SEM from 3 independent experiments. *, p < 0.05, compared with corresponding LPS-treated wildtype cultures. (GIF 24 kb)

High resolution image (TIFF 418 kb)

Supplemental Fig. 3

Deficiency in tnf-α or its receptor genes reduces LPS-induced pro-inflammatory factors in microglia. A. Mixed-glia cultures were prepared from wildtype, TNF-α-deficient, or TNF-R1/R2-deficient mice. After 2 weeks of cells seeding, immunocytochemical analysis of microglia in these mixed-glia cultures was performed by using anti-Iba-1 antibody. B. After 3 hours of LPS treatment (15 ng/ml), TNF-α secretion into the supernatant of mixed-glia cultures was detected by ELISA. Results are shown as the mean ± SEM from 3 independent experiments. *, p < 0.05, compared with vehicle-treated control cultures. #, p < 0.05, compared with corresponding LPS-treated wildtype cultures. C. Expression of COX-2 and iNOS mRNA in mixed-glia cultures at 6 hours after LPS treatment was measured by RT-PCR. Results are represented as percentage of LPS-treated group and shown as the mean ± SEM from 3 independent experiments. #, p < 0.05, compared with corresponding LPS-treated wildtype cultures. (GIF 108 kb)

High resolution image (TIFF 1246 kb)

Supplemental Fig. 4

LPS induces similar amount of TNF-α production in wildtype and COX-2-deficient mixed-glia cultures. Three hours after these cultures were treated with LPS (15 ng/ml), TNF-α secretion into the supernatant of these cultures was detected by ELISA. Results are shown as the mean ± SEM from 3 independent experiments. *, p < 0.05, compared with vehicle-treated control cultures. (GIF 6 kb)

High resolution image (TIFF 70 kb)

Supplemental Fig. 5

Protein kinase inhibition fails to restore reduction of IL-10 release by PGE2. PGE2 and protein kinase inhibitors including wortmannin (50 nM; for PI3K) (A), SB216763 (1 μM; for GSK3β) (B), U0126 (10 μM; for ERK) (C), SP600125 (5 μM; for JNK) (D), and PD98059 (50 μM; for MEK1/2) (E) were added into neuron-glia cultures after these cultures were treated with LPS for 24 hours. IL-10 release into the supernatants was detected at 24 hours following PGE2 treatment (48 hours after LPS treatment) by ELISA. The experiment has been performed three times. Results are shown as the mean ± SEM. *, p < 0.05, compared with corresponding vehicle-treated control cultures; #, p < 0.05 relative to corresponding LPS-treated cultures. NS: non-significant. (GIF 73 kb)

High resolution image (TIFF 1132 kb)

Supplemental Fig. 6

LPS induces similar amount of TNF-α production in wildtype, β-arrestin-1- deficient, and β-arrestin-2- deficient mixed-glia cultures. Three hours after these cultures were treated with LPS (15 ng/ml), TNF-α secretion into the supernatant of these cells were detected by ELISA. Results are shown as the mean ± SEM from 3 independent experiments. *, p < 0.05, compared with vehicle-treated control cultures. (GIF 9 kb)

High resolution image (TIFF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, CH., Chen, SH., Wang, Q. et al. PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition. Mol Neurobiol 52, 587–600 (2015). https://doi.org/10.1007/s12035-014-8889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8889-0

Keywords

Navigation