Skip to main content

Advertisement

Log in

Integrating Genome-Wide Association Study and Brain Expression Data Highlights Cell Adhesion Molecules and Purine Metabolism in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease in the elderly. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. However, a large proportion of AD heritability has yet to be explained. We previously identified the cell adhesion molecule (CAM) pathway as a consistent signal in two AD GWAS. However, it is unclear whether CAM is present in the Genetic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD) GWAS and brain expression GWAS. Meanwhile, we think integrating AD GWAS and AD brain expression datasets may provide complementary information to identify important pathways involved in AD. Here, we conducted a systems analysis using (1) KEGG pathways, (2) large-scale AD GWAS from GERAD (n = 11,789), (3) two brain expression GWAS datasets (n = 399) from the AD cerebellum and temporal cortex, and (4) previous results from pathway analysis of AD GWAS. Our results indicate that (1) CAM is a consistent signal in five AD GWAS; (2) CAM is the most significant signal in AD; (3) we confirmed previous AD risk pathways related to immune system and diseases, and cardiovascular disease, etc.; and (4) we highlighted the purine metabolism pathway in AD for the first time. We believe that our results may advance our understanding of AD mechanisms and will be very informative for future genetic studies in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pedersen NL (2010) Reaching the limits of genome-wide significance in Alzheimer disease: back to the environment. JAMA 303(18):1864–1865

    Article  CAS  PubMed  Google Scholar 

  2. Borovecki F, Klepac N, Muck-Seler D, Hajnsek S, Mubrin Z, Pivac N (2011) Unraveling the biological mechanisms in Alzheimer’s disease—lessons from genomics. Prog Neuropsychopharmacol Bol Psychiatr 35(2):340–347

    Article  CAS  Google Scholar 

  3. Bertram L, Lill CM, Tanzi RE (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  CAS  PubMed  Google Scholar 

  4. Lambert JC, Grenier-Boley B, Chouraki V, Heath S, Zelenika D, Fievet N, Hannequin D, Pasquier F, Hanon O, Brice A, Epelbaum J, Berr C, Dartigues JF, Tzourio C, Campion D, Lathrop M, Amouyel P (2010) Implication of the immune system in Alzheimer’s disease: evidence from genome-wide pathway analysis. J Alzheimers Dis 20(4):1107–1118

    Article  CAS  PubMed  Google Scholar 

  5. Hong MG, Alexeyenko A, Lambert JC, Amouyel P, Prince JA (2010) Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease. J Hum Genet 55(10):707–709

    Article  CAS  PubMed  Google Scholar 

  6. Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, Pocklington A, Abraham R, Hollingworth P, Sims R, Gerrish A, Pahwa JS, Jones N, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Peters O, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Ruther E, Carrasquillo MM, Pankratz VS, Younkin SG, Hardy J, O’Donovan MC, Owen MJ, Williams J (2010) Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One 5(11):e13950

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu G, Jiang Y, Wang P, Feng R, Jiang N, Chen X, Song H, Chen Z (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120(1):190–198

    Article  CAS  PubMed  Google Scholar 

  8. Ramanan VK, Kim S, Holohan K, Shen L, Nho K, Risacher SL, Foroud TM, Mukherjee S, Crane PK, Aisen PS, Petersen RC, Weiner MW, Saykin AJ (2012) Genome-wide pathway analysis of memory impairment in the Alzheimer’s disease neuroimaging initiative (ADNI) cohort implicates gene candidates, canonical pathways, and networks. Brain Imaging Behav 6(4):634–648

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu G, Yao L, Liu J, Jiang Y, Ma G, Chen Z, Zhao B, Li K (2014) Cardiovascular disease contributes to Alzheimer’s disease: evidence from large-scale genome-wide association studies. Neurobiol Aging 35(4):786–792

    Article  PubMed  Google Scholar 

  10. Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN, Nair AA, Middha S, Maharjan S, Nguyen T, Ma L, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Kouri N, Kolbert CP, Jen J, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet 8(6):e1002707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong MG, Pawitan Y, Magnusson PK, Prince JA (2009) Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Hum Genet 126(2):289–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue):W741–W748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Begum F, Ghosh D, Tseng GC, Feingold E (2012) Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res 40(9):3777–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, Oki NO, Motsinger-Reif AA, Churchill E, Lei Z, Appleby D, Kling MA, Trojanowski JQ, Doraiswamy PM, Arnold SE (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:e244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansen KK, Wang L, Aasly JO, White LR, Matson WR, Henchcliffe C, Beal MF, Bogdanov M (2009) Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One 4(10):e7551

    Article  PubMed  PubMed Central  Google Scholar 

  17. LeWitt P, Schultz L, Auinger P, Lu M (2011) CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res 1408:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O’Dushlaine C, Kenny E, Heron EA, Segurado R, Gill M, Morris DW, Corvin A (2009) The SNP ratio test: pathway analysis of genome-wide association datasets. Bioinformatics 25(20):2762–2763

    Article  PubMed  Google Scholar 

  19. Jia P, Wang L, Meltzer HY, Zhao Z (2011) Pathway-based analysis of GWAS datasets: effective but caution required. Int J Neuropsychopharmacol 14(4):567–572

    Article  CAS  PubMed  Google Scholar 

  20. Arasappan D, Tong W, Mummaneni P, Fang H, Amur S (2011) Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells. BMC Med 9:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaever A, Landesfeind M, Feussner K, Morgenstern B, Feussner I, Meinicke P (2014) Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One 9(2):e89297

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shen K, Tseng GC (2010) Meta-analysis for pathway enrichment analysis when combining multiple genomic studies. Bioinformatics 26(10):1316–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the GERAD Consortium and Zou et al. for the AD GWAS and expression datasets. This work was supported by funding from the National Nature Science Foundation of China (grant numbers 81300945, 31200934, 31301938, 81471294, 31171219, 81271213, 81271214).

Conflict of Interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiansheng Sun, Keshen Li or Guiyou Liu.

Additional information

Zimin Xiang, Meiling Xu, and Mingzhi Liao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Xu, M., Liao, M. et al. Integrating Genome-Wide Association Study and Brain Expression Data Highlights Cell Adhesion Molecules and Purine Metabolism in Alzheimer’s Disease. Mol Neurobiol 52, 514–521 (2015). https://doi.org/10.1007/s12035-014-8884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8884-5

Keywords

Navigation