Skip to main content
Log in

AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adaptor protein (AP)-1/σ1B−/− mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B−/− ‘bulk’ endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B−/− ‘bulk’ endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B−/− synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, −δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14(4):167–174

    Article  CAS  PubMed  Google Scholar 

  2. Boehm M, Bonifacino JS (2001) Adaptins: the final recount. Mol Biol Cell 12(10):2907–2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Glyvuk N, Tsytsyura Y, Geumann C, D’Hooge R, Huve J, Kratzke M, Baltes J, Boning D, Klingauf J, Schu P (2010) AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory. EMBO J 29(8):1318–1330. doi:10.1038/emboj.2010.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J, Saftig P, von Figura K, Schu P (2000) μ1A adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 19:2193–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S, Avis T, Barthorpe S, Buck G, Butler A, Cole J, Dicks E, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, West S, Widaa S, Yates A, Catford R, Butler J, Mallya U, Moon J, Luo Y, Dorkins H, Thompson D, Easton DF, Wooster R, Bobrow M, Carpenter N, Simensen RJ, Schwartz CE, Stevenson RE, Turner G, Partington M, Gecz J, Stratton MR, Futreal PA, Raymond FL (2006) Mutations in the gene encoding the σ2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 79(6):1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt MR, Haucke V (2007) Recycling endosomes in neuronal membrane traffic. Biol Cell 99(6):333–342. doi:10.1042/BC20070007

    Article  CAS  PubMed  Google Scholar 

  7. Rizzoli SO, Bethani I, Zwilling D, Wenzel D, Siddiqui TJ, Brandhorst D, Jahn R (2006) Evidence for early endosome-like fusion of recently endocytosed synaptic vesicles. Traffic 7(9):1163–1176

    Article  CAS  PubMed  Google Scholar 

  8. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  9. McPherson PS (2010) Proteomic analysis of clathrin-coated vesicles. Proteomics 10(22):4025–4039. doi:10.1002/pmic.201000253

    Article  CAS  PubMed  Google Scholar 

  10. Borner GH, Harbour M, Hester S, Lilley KS, Robinson MS (2006) Comparative proteomics of clathrin-coated vesicles. J Cell Biol 175(4):571–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt C, Hesse D, Raabe M, Urlaub H, Jahn O (2013) An automated in-gel digestion/iTRAQ-labeling workflow for robust quantification of gel-separated proteins. Proteomics 13(9):1417–1422. doi:10.1002/pmic.201200366

    Article  CAS  PubMed  Google Scholar 

  12. Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96(5):1374–1388

    Article  CAS  PubMed  Google Scholar 

  13. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117. doi:10.1038/35052055

    Article  CAS  PubMed  Google Scholar 

  14. Mori Y, Matsui T, Fukuda M (2013) Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and neurite morphogenesis in hippocampal neurons. J Biol Chem 288(14):9835–9847. doi:10.1074/jbc.M112.427591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394(6692):494–498. doi:10.1038/28879

    Article  CAS  PubMed  Google Scholar 

  16. Wilson JM, de Hoop M, Zorzi N, Toh BH, Dotti CG, Parton RG (2000) EEA1, a tethering protein of the early sorting endosome, shows a polarized distribution in hippocampal neurons, epithelial cells, and fibroblasts. Mol Biol Cell 11(8):2657–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leung SM, Ruiz WG, Apodaca G (2000) Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol Biol Cell 11(6):2131–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gravotta D, Carvajal-Gonzalez JM, Mattera R, Deborde S, Banfelder JR, Bonifacino JS, Rodriguez-Boulan E (2012) The clathrin adaptor AP-1A mediates basolateral polarity. Dev Cell 22(4):811–823. doi:10.1016/j.devcel.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Majumdar D, Nebhan CA, Hu L, Anderson B, Webb DJ (2011) An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons. Mol Cell Neurosci 46(3):633–644. doi:10.1016/j.mcn.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCrea HJ, De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda) 24:8–16. doi:10.1152/physiol.00035.2008

    Article  CAS  Google Scholar 

  21. Khuong TM, Habets RL, Kuenen S, Witkowska A, Kasprowicz J, Swerts J, Jahn R, van den Bogaart G, Verstreken P (2013) Synaptic PI(3,4,5)P3 is required for syntaxin1A clustering and neurotransmitter release. Neuron 77(6):1097–1108. doi:10.1016/j.neuron.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavare JM, Cullen PJ (2013) A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15(5):461–471. doi:10.1038/ncb2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28(21):3290–3302. doi:10.1038/emboj.2009.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Girard M, Poupon V, Blondeau F, McPherson PS (2005) The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 280(48):40135–40143. doi:10.1074/jbc.M505036200

    Article  CAS  PubMed  Google Scholar 

  25. Lobingier BT, Merz AJ (2012) Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol Biol Cell 23(23):4611–4622. doi:10.1091/mbc.E12-05-0343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kitt KN, Hernandez-Deviez D, Ballantyne SD, Spiliotis ET, Casanova JE, Wilson JM (2008) Rab14 regulates apical targeting in polarized epithelial cells. Traffic 9(7):1218–1231. doi:10.1111/j.1600-0854.2008.00752.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Malerod L, Pedersen NM, Sem Wegner CE, Lobert VH, Leithe E, Brech A, Rivedal E, Liestol K, Stenmark H (2011) Cargo-dependent degradation of ESCRT-I as a feedback mechanism to modulate endosomal sorting. Traffic 12(9):1211–1226. doi:10.1111/j.1600-0854.2011.01220.x

    Article  PubMed  Google Scholar 

  28. Goh GY, Huang H, Ullman J, Borre L, Hnasko TS, Trussell LO, Edwards RH (2011) Presynaptic regulation of quantal size: K+/H + exchange stimulates vesicular glutamate transport. Nat Neurosci 14(10):1285–1292. doi:10.1038/nn.2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Belizaire R, Komanduri C, Wooten K, Chen M, Thaller C, Janz R (2004) Characterization of synaptogyrin 3 as a new synaptic vesicle protein. J Comp Neurol 470(3):266–281. doi:10.1002/cne.20008

    Article  CAS  PubMed  Google Scholar 

  30. Singec I, Knoth R, Ditter M, Hagemeyer CE, Rosenbrock H, Frotscher M, Volk B (2002) Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons. J Comp Neurol 452(2):139–153. doi:10.1002/cne.10371

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Chacon R, Sudhof TC (2000) Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J Neurosci 20(21):7941–7950

    CAS  PubMed  Google Scholar 

  32. Lee KJ, Queenan BN, Rozeboom AM, Bellmore R, Lim ST, Vicini S, Pak DT (2013) Mossy fiber-CA3 synapses mediate homeostatic plasticity in mature hippocampal neurons. Neuron 77(1):99–114. doi:10.1016/j.neuron.2012.10.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun T, Xiao HS, Zhou PB, Lu YJ, Bao L, Zhang X (2006) Differential expression of synaptoporin and synaptophysin in primary sensory neurons and up-regulation of synaptoporin after peripheral nerve injury. Neuroscience 141(3):1233–1245. doi:10.1016/j.neuroscience.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  34. Becher A, Drenckhahn A, Pahner I, Margittai M, Jahn R, Ahnert-Hilger G (1999) The synaptophysin-synaptobrevin complex: a hallmark of synaptic vesicle maturation. J Neurosci 19(6):1922–1931

    CAS  PubMed  Google Scholar 

  35. Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH (2013) Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152(4):755–767. doi:10.1016/j.cell.2012.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wieffer M, Uhalte EC, Posor Y, Otten C, Branz K, Schütz I, Mössinger J, Schu P, Abdelilah-Seyfried S, Krauß M, Haucke V (2013) PI4K2β/AP-1-based TGN-endosomal sorting regulates Wnt signaling. Curr Biol 23(21):2185–2190. doi:10.1016/j.cub.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  37. Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW (2011) ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 13(5):559–567. doi:10.1038/ncb2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brodsky FM (2012) Diversity of clathrin function: new tricks for an old protein. Annu Rev Cell Dev Biol 28:309–336. doi:10.1146/annurev-cellbio-101011-155716

    Article  CAS  PubMed  Google Scholar 

  39. Kalli AC, Morgan G, Sansom MS (2013) Interactions of the auxilin-1 PTEN-like domain with model membranes result in nanoclustering of phosphatidyl inositol phosphates. Biophys J 105(1):137–145. doi:10.1016/j.bpj.2013.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Korolchuk VI, Banting G (2002) CK2 and GAK/auxilin2 are major protein kinases in clathrin-coated vesicles. Traffic 3(6):428–439

    Article  CAS  PubMed  Google Scholar 

  41. Traub LM, Kornfeld S, Ungewickell E (1995) Different domains of the AP-1 adaptor complex are required for Golgi membrane binding and clathrin recruitment. J Biol Chem 270(9):4933–4942

    Article  CAS  PubMed  Google Scholar 

  42. Conner SD, Schroter T, Schmid SL (2003) AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin. Traffic 4(12):885–890

    Article  CAS  PubMed  Google Scholar 

  43. Ricotta D, Conner SD, Schmid SL, von Figura K, Honing S (2002) Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 156(5):791–795. doi:10.1083/jcb.200111068jcb.200111068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ricotta D, Hansen J, Preiss C, Teichert D, Honing S (2008) Characterization of a protein phosphatase 2A holoenzyme that dephosphorylates the clathrin adaptors AP-1 and AP-2. J Biol Chem 283(9):5510–5517

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Ko G, Zatti A, Di Giacomo G, Liu L, Raiteri E, Perucco E, Collesi C, Min W, Zeiss C, De Camilli P, Cremona O (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci U S A 106(33):13838–13843. doi:10.1073/pnas.0907008106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maritzen T, Koo SJ, Haucke V (2012) Turning CALM into excitement: AP180 and CALM in endocytosis and disease. Biol Cell 104(10):588–602. doi:10.1111/boc.201200008

    Article  CAS  PubMed  Google Scholar 

  47. Petralia RS, Wang YX, Indig FE, Bushlin I, Wu F, Mattson MP, Yao PJ (2013) Reduction of AP180 and CALM produces defects in synaptic vesicle size and density. Neuromolecular Med 15(1):49–60. doi:10.1007/s12017-012-8194-x

    Article  CAS  PubMed  Google Scholar 

  48. Hao W, Luo Z, Zheng L, Prasad K, Lafer EM (1999) AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J Biol Chem 274(32):22785–22794

    Article  CAS  PubMed  Google Scholar 

  49. Kononenko NL, Diril MK, Puchkov D, Kintscher M, Koo SJ, Pfuhl G, Winter Y, Wienisch M, Klingauf J, Breustedt J, Schmitz D, Maritzen T, Haucke V (2013) Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2. Proc Natl Acad Sci U S A 110(6):E526–E535. doi:10.1073/pnas.1218432110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shupliakov O, Haucke V, Pechstein A (2011) How synapsin I may cluster synaptic vesicles. Semin Cell Dev Biol 22(4):393–399. doi:10.1016/j.semcdb.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  51. Schluter OM, Basu J, Sudhof TC, Rosenmund C (2006) Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J Neurosci 26(4):1239–1246. doi:10.1523/JNEUROSCI.3553-05.2006

    Article  CAS  PubMed  Google Scholar 

  52. Nagano F, Kawabe H, Nakanishi H, Shinohara M, Deguchi-Tawarada M, Takeuchi M, Sasaki T, Takai Y (2002) Rabconnectin-3, a novel protein that binds both GDP/GTP exchange protein and GTPase-activating protein for Rab3 small G protein family. J Biol Chem 277(12):9629–9632. doi:10.1074/jbc.C100730200

    Article  CAS  PubMed  Google Scholar 

  53. Han JH, Lee C, Cheang Y, Kaang BK (2005) Suppression of long-term facilitation by Rab3-effector protein interaction. Brain Res 139(1):13–22. doi:10.1016/j.molbrainres.2005.05.004

    Article  CAS  Google Scholar 

  54. Shirataki H, Sasaki T, Takai Y (2001) Rabphilin-3: a target molecule for Rab3 small G proteins. Methods Enzymol 329:75–82

    Article  CAS  PubMed  Google Scholar 

  55. Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 21(6):1171–1178. doi:10.1016/j.devcel.2011.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu YE, Huo L, Maeder CI, Feng W, Shen K (2013) The balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses. Neuron. doi:10.1016/j.neuron.2013.04.035

    Google Scholar 

  57. Miyamoto Y, Yamauchi J, Sanbe A, Tanoue A (2007) Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth. Exp Cell Res 313(4):791–804. doi:10.1016/j.yexcr.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  58. Miyamoto Y, Torii T, Yamamori N, Ogata T, Tanoue A, Yamauchi J (2013) Akt and PP2A reciprocally regulate the guanine nucleotide exchange factor Dock6 to control axon growth of sensory neurons. Sci Signal 6(265):ra15. doi:10.1126/scisignal.2003661

    Article  PubMed  Google Scholar 

  59. Gross C, Nakamoto M, Yao X, Chan CB, Yim SY, Ye K, Warren ST, Bassell GJ (2010) Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci 30(32):10624–10638. doi:10.1523/JNEUROSCI.0402-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faison MO, Perozzi EF, Caran N, Stewart JK, Tombes RM (2002) Axonal localization of delta Ca2+/calmodulin-dependent protein kinase II in developing P19 neurons. Int J Dev Neurosci 20(8):585–592

    Article  PubMed  Google Scholar 

  61. Rongo C (2002) A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory. Bioessays 24(3):223–233. doi:10.1002/bies.10057

    Article  CAS  PubMed  Google Scholar 

  62. Umahara T, Uchihara T, Nakamura A, Iwamoto T (2011) Differential expression of 14-3-3 protein isoforms in developing rat hippocampus, cortex, rostral migratory stream, olfactory bulb, and white matter. Brain Res 1410:1–11. doi:10.1016/j.brainres.2011.06.036

    Article  CAS  PubMed  Google Scholar 

  63. Raiborg C, Schink KO, Stenmark H (2013) Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J. doi:10.1111/febs.12116

    PubMed  Google Scholar 

  64. Von Bartheld CS, Altick AL (2011) Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 93(3):313–340. doi:10.1016/j.pneurobio.2011.01.003

    Article  Google Scholar 

  65. Diril MK, Wienisch M, Jung N, Klingauf J, Haucke V (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Dev Cell 10(2):233–244. doi:10.1016/j.devcel.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  66. Miller SE, Collins BM, McCoy AJ, Robinson MS, Owen DJ (2007) A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450(7169):570–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank numerous colleagues who provided us with anti-sera, and we apologise that we can not mention them here due to space limitations. Their names are given in the SI. We thank O. Bernhard and D. Hesse for excellent technical assistance. This work was supported by the DFG grants Schu 802/3-1 and 802/3-2 to PS.

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schu.

Additional information

Summary Statement

Deficiency in adaptor protein (AP)-1/σ1B leads to mental retardation and fewer synaptic vesicles but more endosomes and clathrin-coated-vesicles (CCVs). Endosomes mediate primarily synaptic vesicle protein degradation, not recycling into alternative pathways. AP-2 CCV accumulates indicating coupling of endo- and exocytosis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 10970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kratzke, M., Candiello, E., Schmidt, B. et al. AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis. Mol Neurobiol 52, 142–161 (2015). https://doi.org/10.1007/s12035-014-8852-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8852-0

Keywords

Navigation