Molecular Neurobiology

, Volume 52, Issue 1, pp 26–37 | Cite as

Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins

  • Patrícia Schönhofen
  • Liana M. de Medeiros
  • Ivi Juliana Bristot
  • Fernanda M. Lopes
  • Marco A. De Bastiani
  • Flávio Kapczinski
  • José Alexandre S. Crippa
  • Mauro Antônio A. Castro
  • Richard B. Parsons
  • Fábio KlamtEmail author


Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD’s neuroprotective effect in terminal differentiation (mature) and during neuronal differentiation (neuronal developmental toxicity model) of the human neuroblastoma SH-SY5Y cell line. A dose-response curve was performed to establish a sublethal dose of CBD with antioxidant activity (2.5 μM). In terminally differentiated SH-SY5Y cells, incubation with 2.5 μM CBD was unable to protect cells against the neurotoxic effect of glycolaldehyde, methylglyoxal, 6-hydroxydopamine, and hydrogen peroxide (H2O2). Moreover, no difference in antioxidant potential and neurite density was observed. When SH-SY5Y cells undergoing neuronal differentiation were exposed to CBD, no differences in antioxidant potential and neurite density were observed. However, CBD potentiated the neurotoxicity induced by all redox-active drugs tested. Our data indicate that 2.5 μM of CBD, the higher dose tolerated by differentiated SH-SY5Y neuronal cells, does not provide neuroprotection for terminally differentiated cells and shows, for the first time, that exposure of CBD during neuronal differentiation could sensitize immature cells to future challenges with neurotoxins.


Cannabidiol Neuroprotection Neurodevelopmental toxicity model SH-SY5Y cells Neurotoxicity Side effects 



We thank MSc. Moema Queiroz Vieira from the Centro de Microscopia Eletronica (CME/UFRGS) for expert assistance with scanning electron microscopy (SEM). This work was supported by grants from the Brazilians agencies MCT/CNPq Universal (470306/2011-4), PRONEX/FAPERGS (1000274), PRONEM/FAPERGS (11/2032-5), PqG/FAPERGS (2414-2551/12-8), and MCT/CNPq INCT-TM (573671/2008-7).

Supplementary material

12035_2014_8843_MOESM1_ESM.doc (55 kb)
ESM 1 (DOC 55 kb)


  1. 1.
    Cassol-Jr OJ, Comim CM, Silva BR et al (2010) Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res 1348:128–138. doi: 10.1016/j.brainres.2010.06.023 CrossRefPubMedGoogle Scholar
  2. 2.
    Karniol IG, Shirakawa I, Kasinski N et al (1974) Cannabidiol interferes with the effects of delta 9-tetrahydrocannabinol in man. Eur J Pharmacol 28:172–177CrossRefPubMedGoogle Scholar
  3. 3.
    Grlic L (1976) A comparative study on some chemical and biological characteristics of various samples of cannabis resin. Bull Narcotics 14:37–46Google Scholar
  4. 4.
    Izzo A, Borrelli F, Capasso R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:6147. doi: 10.1016/ CrossRefGoogle Scholar
  5. 5.
    Pertwee RG (2012) Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 367:3353–3363. doi: 10.1098/rstb.2011.0381 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Luchicchi A, Pistis M (2012) Anandamide and 2-arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46:374–392. doi: 10.1007/s12035-012-8299-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Gaoni Y, Mechoulam R (1971) Isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. J Am Chem Soc 93:217–224. doi: 10.1021/ja00730a036 CrossRefPubMedGoogle Scholar
  8. 8.
    Howlett AC, Blume LC, Dalton GD (2010) CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 17:1382–1393. doi: 10.2174/092986710790980023 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pertwee RG, Ross RA, Craib SJ, Thomas A (2002) (−)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur J Pharmacol 456:99–106CrossRefPubMedGoogle Scholar
  10. 10.
    Galve-Roperh I, Chiurchiù V, Díaz-Alonso J et al (2013) Progress in lipid research cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog Lipid Res 52:633–650. doi: 10.1016/j.plipres.2013.05.004 CrossRefPubMedGoogle Scholar
  11. 11.
    Begbie J, Doherty P, Graham A (2004) Cannabinoid receptor, CB1, expression follows neuronal differentiation in the early chick embryo. J Anat 205:213–218. doi: 10.1111/j.0021-8782.2004.00325.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Palazuelos J, Aguado T, Egia A et al (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20:2405–2407. doi: 10.1096/fj.06-6164fje CrossRefPubMedGoogle Scholar
  13. 13.
    Watson S, Chambers D, Hobbs C et al (2008) The endocannabinoid receptor, CB1, is required for normal axonal growth and fasciculation. Mol Cell Neurosci 38:89–97. doi: 10.1016/j.mcn.2008.02.001 CrossRefPubMedGoogle Scholar
  14. 14.
    Bossong MG, Niesink RJM (2010) Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 92:370–385. doi: 10.1016/j.pneurobio.2010.06.010 CrossRefPubMedGoogle Scholar
  15. 15.
    Fernández-Ruiz J, Sagredo O, Pazos MR et al (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333. doi: 10.1111/j.1365-2125.2012.04341.x CrossRefPubMedGoogle Scholar
  16. 16.
    Borges RS, Batista J Jr, Viana RB et al (2013) Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules 18:12663–12674. doi: 10.3390/molecules181012663 CrossRefPubMedGoogle Scholar
  17. 17.
    Alvarez FJ, Lafuente H, Rey-Santano MC et al (2008) Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res 64:653–658. doi: 10.1203/PDR.0b013e318186e5dd CrossRefPubMedGoogle Scholar
  18. 18.
    Lafuente H, Alvarez FJ, Pazos MR et al (2011) Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr Res 70:272–277. doi: 10.1203/PDR.0b013e3182276b11 CrossRefPubMedGoogle Scholar
  19. 19.
    Pazos MR, Cinquina V, Gómez A et al (2012) Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63:776–783. doi: 10.1016/j.neuropharm.2012.05.034 CrossRefPubMedGoogle Scholar
  20. 20.
    Crippa JAS, Zuardi AW, Hallak JEC (2010) Therapeutical use of the cannabinoids in psychiatry. Rev Bras Psiquiatr 32(Suppl 1):S56–S66. doi: 10.1590/S1516-44462010000500009 CrossRefPubMedGoogle Scholar
  21. 21.
    Gordon E, Devinsky O (2001) Alcohol and marijuana: effects on epilepsy and use by patients with epilepsy. Epilepsia 42:1266–1272CrossRefPubMedGoogle Scholar
  22. 22.
    Lastres-Becker I, Molina-Holgado F, Ramos A et al (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107. doi: 10.1016/j.nbd.2004.11.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Harvey BS, Ohlsson KS, Mååg JLV et al (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. Neurotoxicology 33:138–146. doi: 10.1016/j.neuro.2011.12.015 CrossRefPubMedGoogle Scholar
  24. 24.
    Carroll CB, Zeissler M-L, Hanemann CO, Zajicek JP (2012) Δ9-Tetrahydrocannabinol (Δ9-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson’s disease. Neuropathol Appl Neurobiol 38:535–547. doi: 10.1111/j.1365-2990.2011.01248.x CrossRefPubMedGoogle Scholar
  25. 25.
    Da Silva VK, de Freitas BS, da Silva Dornelles A et al (2013) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol. doi: 10.1007/s12035-013-8514-7 Google Scholar
  26. 26.
    Fagherazzi EV, Garcia VA, Maurmann N et al (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berl) 219:1133–1140. doi: 10.1007/s00213-011-2449-3 CrossRefGoogle Scholar
  27. 27.
    Mechoulam R, Peters M, Murillo-Rodriguez E, Hanuš LO (2007) Cannabidiol—recent advances. Chem Biodivers 4:1678–1692. doi: 10.1002/cbdv.200790147 CrossRefPubMedGoogle Scholar
  28. 28.
    Bergamaschi MM, Queiroz RHC, Zuardi AW, Crippa JAS (2011) Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr Drug Saf 6:237–249CrossRefPubMedGoogle Scholar
  29. 29.
    Porter BE, Jacobson C (2013) Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav 29:574–577. doi: 10.1016/j.yebeh.2013.08.037 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramos A, Decio A, Mechoulam R et al (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV 1 and adenosine A 2A receptors. Eur J Neurosci 26:843–851. doi: 10.1111/j.1460-9568.2007.05717.x CrossRefPubMedGoogle Scholar
  31. 31.
    Valdeolivas S, Satta V, Pertwee RG et al (2012) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB(1) and CB(2) receptors. ACS Chem Neurosci 3:400–406. doi: 10.1021/cn200114w CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zuardi AW (2008) Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 30:271–280CrossRefPubMedGoogle Scholar
  33. 33.
    Bal-Price AK, Suñol C, Weiss DG et al (2008) Application of in vitro neurotoxicity testing for regulatory purposes: symposium III summary and research needs. Neurotoxicology 29:520–531. doi: 10.1016/j.neuro.2008.02.008 CrossRefPubMedGoogle Scholar
  34. 34.
    Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376. doi: 10.1016/j.neuro.2008.02.011 CrossRefPubMedGoogle Scholar
  35. 35.
    Lopes FM, Schröder R, da Frota MLC et al (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. doi: 10.1016/j.brainres.2010.03.102 CrossRefPubMedGoogle Scholar
  36. 36.
    Korecka JA, van Kesteren RE, Blaas E et al (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. doi: 10.1371/journal.pone.0063862 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lopes FM, Londero GF, de Medeiros LM et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149. doi: 10.1007/s12640-012-9311-1 CrossRefPubMedGoogle Scholar
  38. 38.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616. doi: 10.1016/s0891-5849(99)00107-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. doi: 10.1038/sj.bjp.0705776 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158. doi: 10.1016/0891-5849(94)00117-3 CrossRefPubMedGoogle Scholar
  42. 42.
    Dresch MTK, Rossato SB, Kappel VD et al (2009) Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem 385:107–114. doi: 10.1016/j.ab.2008.10.036 CrossRefPubMedGoogle Scholar
  43. 43.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi: 10.1016/0003-9861(59)90090-6 CrossRefPubMedGoogle Scholar
  44. 44.
    Nishida Y, Adati N, Ozawa R et al (2008) Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y. BMC Res Notes 1:95. doi: 10.1186/1756-0500-1-95 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315. doi: 10.1093/bioinformatics/btg405 CrossRefPubMedGoogle Scholar
  46. 46.
    Smyth GK (2005) limma: linear models for microarray data. Bioinforma. Comput. Biol. Solut. Using R Bioconductor. pp 397–420Google Scholar
  47. 47.
    Castro MAA, Wang X, Fletcher MNC et al (2012) RedeR: R/Bioconductor package for representing modular structures, nested networks and multiple levels of hierarchical associations. Genome Biol 13:R29. doi: 10.1186/gb-2012-13-4-r29 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schapira AHV (2008) Mitochondrial dysfunction in neurodegenerative diseases. Neurochem Res 33:2502–2509. doi: 10.1007/s11064-008-9855-x CrossRefPubMedGoogle Scholar
  49. 49.
    Beisswenger PJ, Drummond KS, Nelson RG et al (2005) Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress. Diabetes 54:3274–3281. doi: 10.2337/diabetes.54.11.3274 CrossRefPubMedGoogle Scholar
  50. 50.
    Gomez-Lazaro M, Bonekamp NA, Galindo MF et al (2008) 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 44:1960–1969. doi: 10.1016/j.freeradbiomed.2008.03.009 CrossRefPubMedGoogle Scholar
  51. 51.
    Lehmensiek V, Tan E-M, Liebau S et al (2006) Dopamine transporter-mediated cytotoxicity of 6-hydroxydopamine in vitro depends on expression of mutant alpha-synucleins related to Parkinson’s disease. Neurochem Int 48:329–340. doi: 10.1016/j.neuint.2005.11.008 CrossRefPubMedGoogle Scholar
  52. 52.
    Turkez H, Sozio P, Geyikoglu F et al (2013) Neuroprotective effects of farnesene against hydrogen peroxide-induced neurotoxicity in vitro. Cell Mol Neurobiol 34:101–111. doi: 10.1007/s10571-013-9991-y CrossRefPubMedGoogle Scholar
  53. 53.
    Huang X, Moir RD, Tanzi RE et al (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163CrossRefPubMedGoogle Scholar
  54. 54.
    Huang S-L, He H-B, Zou K et al (2014) Protective effect of tomatine against hydrogen peroxide-induced neurotoxicity in neuroblastoma (SH-SY5Y) cells. J Pharm Pharmacol. doi: 10.1111/jphp.12205 Google Scholar
  55. 55.
    Turkez H, Togar B, Di Stefano A et al (2014) Protective effects of cyclosativene on H2O 2-induced injury in cultured rat primary cerebral cortex cells. Cytotechnology. doi: 10.1007/s10616-013-9685-9 Google Scholar
  56. 56.
    Wolf SA, Bick-Sander A, Fabel K et al (2010) Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal 8:12. doi: 10.1186/1478-811X-8-12 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Paria BC, Ma W, Andrenyak DM et al (1998) Effects of cannabinoids on preimplantation mouse embryo development and implantation are mediated by brain-type cannabinoid receptors. Biol Reprod 58:1490–1495CrossRefPubMedGoogle Scholar
  58. 58.
    Wang J, Paria BC, Dey SK, Armant DR (1999) Stage-specific excitation of cannabinoid receptor exhibits differential effects on mouse embryonic development. Biol Reprod 60:839–844CrossRefPubMedGoogle Scholar
  59. 59.
    MacCarrone M, De Felici M, Bari M et al (2000) Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. Eur J Biochem 267:2991–2997CrossRefPubMedGoogle Scholar
  60. 60.
    Nones J, Spohr TCLS, Furtado DR et al (2010) Cannabinoids modulate cell survival in embryoid bodies. Cell Biol Int 34:399–408. doi: 10.1042/CBI20090036 CrossRefPubMedGoogle Scholar
  61. 61.
    Harkany T, Guzmán M, Galve-Roperh I et al (2007) The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 28:83–92. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  62. 62.
    Díaz-Alonso J, Aguado T, Wu C-S et al (2012) The CB(1) cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis. J Neurosci 32:16651–16665. doi: 10.1523/JNEUROSCI.0681-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jiang S, Fu Y, Williams J et al (2007) Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells. PLoS ONE 2:e641. doi: 10.1371/journal.pone.0000641 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Oh H-A, Kwon S, Choi S et al (2013) Uncovering a role for endocannabinoid signaling in autophagy in preimplantation mouse embryos. Mol Hum Reprod 19:93–101. doi: 10.1093/molehr/gas049 CrossRefPubMedGoogle Scholar
  65. 65.
    Zhuang S-Y, Bridges D, Grigorenko E et al (2005) Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology 48:1086–1096. doi: 10.1016/j.neuropharm.2005.01.005 CrossRefPubMedGoogle Scholar
  66. 66.
    Englund A, Morrison PD, Nottage J et al (2012) Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. doi: 10.1177/0269881112460109 PubMedGoogle Scholar
  67. 67.
    Huizink AC (2013) Prenatal cannabis exposure and infant outcomes: overview of studies. Prog Neuropsychopharmacol Biol Psychiatry. doi: 10.1016/j.pnpbp.2013.09.014 PubMedGoogle Scholar
  68. 68.
    Zhornitsky S, Potvin S (2012) Cannabidiol in humans—the quest for therapeutic targets. Pharmaceuticals (Basel) 5:529–552. doi: 10.3390/ph5050529 CrossRefGoogle Scholar
  69. 69.
    Ranganathan M, D’Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl) 188:425–444. doi: 10.1007/s00213-006-0508-y CrossRefGoogle Scholar
  70. 70.
    Velez-Pardo C, Jimenez-Del-Rio M, Lores-Arnaiz S, Bustamante J (2010) Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure. Neurochem Res 35:1323–1332. doi: 10.1007/s11064-010-0188-1 CrossRefPubMedGoogle Scholar
  71. 71.
    Elsohly MA, Gul W, Wanas AS, Radwan MM (2014) Synthetic cannabinoids: analysis and metabolites. Life Sci. doi: 10.1016/j.lfs.2013.12.212 PubMedGoogle Scholar
  72. 72.
    Lax P, Esquiva G, Altavilla C, Cuenca N (2014) Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res. doi: 10.1016/j.exer.2014.01.019 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Patrícia Schönhofen
    • 1
    • 2
  • Liana M. de Medeiros
    • 1
    • 2
  • Ivi Juliana Bristot
    • 1
    • 2
  • Fernanda M. Lopes
    • 1
    • 2
  • Marco A. De Bastiani
    • 1
    • 2
  • Flávio Kapczinski
    • 2
    • 3
  • José Alexandre S. Crippa
    • 2
    • 4
  • Mauro Antônio A. Castro
    • 5
  • Richard B. Parsons
    • 6
  • Fábio Klamt
    • 1
    • 2
    • 7
    Email author
  1. 1.Department of Biochemistry, Laboratory of Cellular BiochemistryICBS/UFRGSPorto AlegreBrazil
  2. 2.National Institutes of Science and Technology–Translational Medicine (INCT-TM)Porto AlegreBrazil
  3. 3.Molecular Psychiatry LaboratoryHCPA/UFRGSPorto AlegreBrazil
  4. 4.Neuroscience and Behavior Department, Faculty of Medicine of Ribeirão PretoUSPRibeirão PretoBrazil
  5. 5.Laboratory of Bioinformatics, Professional and Technological Education Sector, Centro PolitécnicoUFPRCuritibaBrazil
  6. 6.Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
  7. 7.Department of Biochemistry (ICBS)Federal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations