Advertisement

Molecular Neurobiology

, Volume 51, Issue 2, pp 591–598 | Cite as

Inhibition of IκB Kinase (IKK) Protects Against Peripheral Nerve Dysfunction of Experimental Diabetes

  • Geeta Negi
  • Shyam S. SharmaEmail author
Article

Abstract

Nuclear factor-κB (NF-κB) has been reported as a critical component of signalling mechanisms involved in the pathogenesis of a number of inflammatory conditions. Previous reports have shown that anti-inflammatory agents have a protective role in experimental diabetic neuropathy. Here, we assessed whether the inhibition of NF-κB cascade via IκB kinase (IKK) exerts any neuroprotective effect in experimental diabetic neuropathy. IKK inhibitor SC-514 (1 and 3 mg/kg) was administered daily for 2 weeks starting after 6 weeks of streptozotocin-induced diabetes. Nerve conduction and blood flow were determined by Powerlab and LASER Doppler system, respectively. We evaluated the changes in NF-κB, iNOS, and COX-2 expression by Western blotting in sciatic nerve. We found that IKK inhibition with SC-514 increased nerve blood flow and conduction velocity and improved pain threshold in diabetic animals. SC-514 also reduced the expression of NF-κB and phosphorylation of IKKβ in the sciatic nerve. Treatment with SC-514 reduced the elevated levels of pro-inflammatory cytokines (TNF-α and IL-6), iNOS, and COX-2. SC-514 reduces the expression of NF-κB and its downstream inflammatory components which may be involved in the improvement in nerve functions and pain perception in diabetic neuropathy. From the data of the present study, we suggest that diminution in IKK can be exploited as a drug target to significantly reduce the development of long-term complications of diabetes, particularly neuropathy.

Keywords

Diabetic neuropathy NF-κB IKK IκB SC-514 

Notes

Acknowledgments

This study was financially supported by the Council of Scientific and Industrial Research (CSIR, New Delhi, India) and Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India to Dr. S.S. Sharma. Ms Geeta Negi is a recipient of CSIR-NET research fellowship.

Conflict of Interest

All the authors have no competing interests.

References

  1. 1.
    Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260. doi: 10.1146/annurev.immunol.16.1.225 CrossRefPubMedGoogle Scholar
  2. 2.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663. doi: 10.1146/annurev.immunol.18.1.621 CrossRefPubMedGoogle Scholar
  3. 3.
    Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26(3):203–234. doi: 10.1101/gad.183434.111 CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Karin M (1999) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18(49):6867–6874. doi: 10.1038/sj.onc.1203219 CrossRefPubMedGoogle Scholar
  5. 5.
    Perkins ND (2012) The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12(2):121–132. doi: 10.1038/nrc3204 PubMedGoogle Scholar
  6. 6.
    Scheidereit C (2006) IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25(51):6685–6705. doi: 10.1038/sj.onc.1209934 CrossRefPubMedGoogle Scholar
  7. 7.
    Gamble C, McIntosh K, Scott R, Ho KH, Plevin R, Paul A (2012) Inhibitory kappa B Kinases as targets for pharmacological regulation. Br J Pharmacol 165(4):802–819. doi: 10.1111/j.1476-5381.2011.01608.x CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kim SG, Veena MS, Basak SK, Han E, Tajima T, Gjertson DW, Starr J, Eidelman O, Pollard HB, Srivastava M, Srivatsan ES, Wang MB (2011) Curcumin treatment suppresses IKKbeta kinase activity of salivary cells of patients with head and neck cancer: a pilot study. Clin Cancer Res 17(18):5953–5961. doi: 10.1158/1078-0432.CCR-11-1272 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T, Sakai K, Inbe H, Takeshita K, Ishimori M, Komura H, Murata T, Lowinger T, Bacon KB (2005) A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 145(2):178–192. doi: 10.1038/sj.bjp.0706176 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Solinas G, Karin M (2010) JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 24(8):2596–2611. doi: 10.1096/fj.09-151340 CrossRefPubMedGoogle Scholar
  11. 11.
    van Diepen JA, Wong MC, Guigas B, Bos J, Stienstra R, Hodson L, Shoelson SE, Berbee JF, Rensen PC, Romijn JA, Havekes LM, Voshol PJ (2011) Hepatocyte-specific IKK-beta activation enhances VLDL-triglyceride production in APOE*3-Leiden mice. J Lipid Res 52(5):942–950. doi: 10.1194/jlr.M010405 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8(4):294–304. doi: 10.2174/156720211798120972 CrossRefPubMedGoogle Scholar
  13. 13.
    Negi G, Kumar A, Kaundal RK, Gulati A, Sharma SS (2009) Functional and biochemical evidence indicating beneficial effect of Melatonin and Nicotinamide alone and in combination in experimental diabetic neuropathy. Neuropharmacology 58(3):585–592. doi: 10.1016/j.neuropharm.2009.11.018 CrossRefPubMedGoogle Scholar
  14. 14.
    Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88. doi: 10.1016/0304-3959(88)90026-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Negi G, Kumar A, Sharma SS (2010) Concurrent targeting of nitrosative stress-PARP pathway corrects functional, behavioral and biochemical deficits in experimental diabetic neuropathy. Biochem Biophys Res Commun 391(1):102–106. doi: 10.1016/j.bbrc.2009.11.010 CrossRefPubMedGoogle Scholar
  16. 16.
    Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J Pineal Res 50(2):124–131. doi: 10.1111/j.1600-079X.2010.00821.x PubMedGoogle Scholar
  17. 17.
    Kumar A, Negi G, Sharma SS (2011) JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: effect on neuroinflammation and antioxidant defence. Diabetes Obes Metab 13(8):750–758. doi: 10.1111/j.1463-1326.2011.01402.x CrossRefPubMedGoogle Scholar
  18. 18.
    Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets 9(1):60–67. doi: 10.2174/138945008783431718 CrossRefPubMedGoogle Scholar
  19. 19.
    Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2(3):a000158. doi: 10.1101/cshperspect.a000158 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Karin M, Delhase M (2000) The IkB kinase (IKK) and NF-kB: key elements of proinflammatory signalling. Semin Immunol 12(1):85–98. doi: 10.1006/smim.2000.0210 CrossRefPubMedGoogle Scholar
  21. 21.
    Gomez AB, MacKenzie C, Paul A, Plevin R (2005) Selective inhibition of inhibitory kappa B kinase-beta abrogates induction of nitric oxide synthase in lipopolysaccharide-stimulated rat aortic smooth muscle cells. Br J Pharmacol 146(2):217–225. doi: 10.1038/sj.bjp.0706308 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) A novel NF-kappaB pathway involving IKKbeta and p65/RelA Ser-536 phosphorylation results in p53 Inhibition in the absence of NF-kappaB transcriptional activity. J Biol Chem 280(11):10326–10332. doi: 10.1074/jbc.M412643200 CrossRefPubMedGoogle Scholar
  23. 23.
    Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M, Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R, Graneto M, Hanau C, Perry T, Tripp CS (2003) A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem 278(35):32861–32871. doi: 10.1074/jbc.M211439200 CrossRefPubMedGoogle Scholar
  24. 24.
    Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189(11):1839–1845. doi: 10.1084/jem.189.11.1839 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Gill JS, Windebank AJ (2000) Ceramide initiates NFkappaB-mediated caspase activation in neuronal apoptosis. Neurobiol Dis 7(4):448–461. doi: 10.1006/nbdi.2000.0312 CrossRefPubMedGoogle Scholar
  26. 26.
    Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5(5):554–559. doi: 10.1038/8432 CrossRefPubMedGoogle Scholar
  27. 27.
    Boissiere F, Hunot S, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer’s disease. Neuroreport 8(13):2849–2852CrossRefPubMedGoogle Scholar
  28. 28.
    Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D (2011) Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-kappaB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J 25(8):2782–2791. doi: 10.1096/fj.10-178095 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Moser CV, Kynast K, Baatz K, Russe OQ, Ferreiros N, Costiuk H, Lu R, Schmidtko A, Tegeder I, Geisslinger G, Niederberger E (2011) The protein kinase IKKepsilon is a potential target for the treatment of inflammatory hyperalgesia. J Immunol 187(5):2617–2625. doi: 10.4049/jimmunol.1004088 CrossRefPubMedGoogle Scholar
  30. 30.
    J-e Y, Yuan W, Lou X, Zhu T (2012) Streptozotocin-induced diabetic hyperalgesia in rats is associated with upregulation of toll-like receptor 4 expression. Neurosci Lett 526(1):54–58. doi: 10.1016/j.neulet.2012.08.012 CrossRefGoogle Scholar
  31. 31.
    Nadjar A, Tridon V, May MJ, Ghosh S, Dantzer R, Amedee T, Parnet P (2005) NFkappaB activates in vivo the synthesis of inducible Cox-2 in the brain. J Cereb Blood Flow Metab 25(8):1047–1059. doi: 10.1038/sj.jcbfm.9600106 CrossRefPubMedGoogle Scholar
  32. 32.
    Sorli CH, Zhang HJ, Armstrong MB, Rajotte RV, Maclouf J, Robertson RP (1998) Basal expression of cyclooxygenase-2 and nuclear factor-interleukin 6 are dominant and coordinately regulated by interleukin 1 in the pancreatic islet. Proc Natl Acad Sci U S A 95(4):1788–1793CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269(7):4705–4708PubMedGoogle Scholar
  34. 34.
    Ramos KM, Jiang Y, Svensson CI, Calcutt NA (2007) Pathogenesis of spinally mediated hyperalgesia in diabetes. Diabetes 56(6):1569–1576. doi: 10.2337/db06-1269 CrossRefPubMedGoogle Scholar
  35. 35.
    Bujalska M, Tatarkiewicz J, de Corde A, Gumulka SW (2008) Effect of cyclooxygenase and nitric oxide synthase inhibitors on streptozotocin-induced hyperalgesia in rats. Pharmacology 81(2):151–157. doi: 10.1159/000110787 CrossRefPubMedGoogle Scholar
  36. 36.
    Matsunaga A, Kawamoto M, Shiraishi S, Yasuda T, Kajiyama S, Kurita S, Yuge O (2007) Intrathecally administered COX-2 but not COX-1 or COX-3 inhibitors attenuate streptozotocin-induced mechanical hyperalgesia in rats. Eur J Pharmacol 554(1):12–17. doi: 10.1016/j.ejphar.2006.09.072 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Molecular Neuropharmacology Laboratory, Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia

Personalised recommendations