Skip to main content
Log in

Specific Binding of Lacosamide to Collapsin Response Mediator Protein 2 (CRMP2) and Direct Impairment of its Canonical Function: Implications for the Therapeutic Potential of Lacosamide

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The novel antiepileptic drug lacosamide (LCM; SPM927, Vimpat®) has been heralded as having a dual-mode of action through interactions with both the voltage-gated sodium channel and the neurite outgrowth-promoting collapsin response mediator protein 2 (CRMP2). Lacosamide’s ability to dampen neuronal excitability through the voltage-gated sodium channel likely underlies its efficacy in attenuating the symptoms of epilepsy (i.e., seizures). While the role of CRMP2 in epilepsy has not been well studied, given the proposed involvement of circuit reorganization in epileptogenesis, the ability of lacosamide to alter CRMP2 function may prove disease modifying. Recently, however, the validity of lacosamide’s interaction with CRMP2 has come under scrutiny. In this review, we address the contradictory reports concerning the binding of lacosamide to CRMP2 as well as the ability of lacosamide to directly impact CRMP2 function. Additionally, we address similarly the contradicting reports regarding the potential disease-modifying effect of lacosamide on the development and progression of epilepsy. As the vast majority of antiepileptic drugs influences only the symptoms of epilepsy, the ability to hinder disease progression would be a major breakthrough in efforts to cure or prevent this debilitating syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Biton V (2012) Lacosamide for the treatment of partial-onset seizures. Expert Rev Neurother 12(6):645–655. doi:10.1586/ern.12.50

    Article  CAS  PubMed  Google Scholar 

  2. Cortes S, Liao ZK, Watson D, Kohn H (1985) Effect of structural modification of the hydantoin ring on anticonvulsant activity. J Med Chem 28(5):601–606

    Article  CAS  PubMed  Google Scholar 

  3. Choi D, Stables JP, Kohn H (1996) The anticonvulsant activities of functionalized N-benzyl 2-acetamidoacetamides. The importance of the 2-acetamido substituent. Bioorg Med Chem 4(12):2105–2114

    Article  CAS  PubMed  Google Scholar 

  4. Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Loiseau P, Perucca E (2001) Progress report on new antiepileptic drugs: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 43(1):11–58

    Article  CAS  PubMed  Google Scholar 

  5. Duncan GE, Kohn H (2005) The novel antiepileptic drug lacosamide blocks behavioral and brain metabolic manifestations of seizure activity in the 6 Hz psychomotor seizure model. Epilepsy Res 67(1–2):81–87. doi:10.1016/j.eplepsyres.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  6. Stöhr T, Kupferberg HJ, Stables JP, Choi D, Harris RH, Kohn H, Walton N, White HS (2007) Lacosamide, a novel anti-convulsant drug, shows efficacy with a wide safety margin in rodent models for epilepsy. Epilepsy Res 74(2–3):147–154. doi:10.1016/j.eplepsyres.2007.03.004

    Article  PubMed  Google Scholar 

  7. Perucca E, Yasothan U, Clincke G, Kirkpatrick P (2008) Lacosamide. Nat Rev Drug Discov 7(12):973–974

    Article  CAS  PubMed  Google Scholar 

  8. EMA EMA (2012) Vimpat. EPAR summary for the public. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000863/human_med_001139.jsp&mid=WC0b01ac058001d124

  9. Markoula S, Teotonio R, Ratnaraj N, Duncan JS, Sander JW, Patsalos PN (2014) Lacosamide serum concentrations in adult patients with epilepsy: the influence of gender, age, dose, and concomitant antiepileptic drugs. Ther Drug Monit. doi:10.1097/FTD.0000000000000051

    PubMed  Google Scholar 

  10. Chung S, Ben-Menachem E, Sperling MR, Rosenfeld W, Fountain NB, Benbadis S, Hebert D, Isojarvi J, Doty P (2010) Examining the clinical utility of lacosamide: Pooled analyses of three phase II/III clinical trials. CNS Drugs 24(12):1041–1054. doi:10.2165/11586830-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  11. Beydoun A, D’Souza J, Hebert D, Doty P (2009) Lacosamide: Pharmacology, mechanisms of action and pooled efficacy and safety data in partial-onset seizures. Expert Rev Neurother 9(1):33–42. doi:10.1586/14737175.9.1.33

    Article  CAS  PubMed  Google Scholar 

  12. Errington AC, Coyne L, Stohr T, Selve N, Lees G (2006) Seeking a mechanism of action for the novel anticonvulsant lacosamide. Neuropharmacology 50(8):1016–1029. doi:10.1016/j.neuropharm.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  13. Errington AC, Stohr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73(1):157–169

    Article  CAS  PubMed  Google Scholar 

  14. Beyreuther BK, Freitag J, Heers C, Krebsfanger N, Scharfenecker U, Stohr T (2007) Lacosamide: a review of preclinical properties. CNS Drug Rev 13(1):21–42

    Article  CAS  PubMed  Google Scholar 

  15. Park KD, Morieux P, Salome C, Cotten SW, Reamtong O, Eyers C, Gaskell SJ, Stables JP, Liu R, Kohn H (2009) Lacosamide isothiocyanate-based agents: novel agents to target and identify lacosamide receptors. J Med Chem 52(21):6897–6911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Park KD, Stables JP, Liu R, Kohn H (2010) Proteomic searches comparing two (R)-lacosamide affinity baits: an electrophilic arylisothiocyanate and a photoactivated arylazide group. Org Biomol Chem 8(12):2803–2813. doi:10.1039/c000987c

    Article  CAS  PubMed  Google Scholar 

  17. Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16(19):6197–6207

    CAS  PubMed  Google Scholar 

  18. Schmidt EF, Strittmatter SM (2007) The CRMP family of proteins and their role in Sema3A signaling. Adv Exp Med Biol 600:1–11

    Article  PubMed Central  PubMed  Google Scholar 

  19. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J (2003) Collapsin response mediator proteins (CRMPs): Involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28(1):51–64

    Article  CAS  PubMed  Google Scholar 

  20. Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Molecular Neurobiology 43(3):180–91

    Article  CAS  PubMed  Google Scholar 

  21. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591

    CAS  PubMed  Google Scholar 

  22. Chae YC, Lee S, Heo K, Ha SH, Jung Y, Kim JH, Ihara Y, Suh PG, Ryu SH (2009) Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity. Cell Signal 21(12):1818–1826. doi:10.1016/j.cellsig.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  23. Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y, Kaibuchi K (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275(31):23973–23980

    Article  CAS  PubMed  Google Scholar 

  24. Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci: Off J Soc Neurosci 24(41):8994–9004. doi:10.1523/jneurosci.3184-04.2004

    Article  CAS  Google Scholar 

  25. Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, Sutherland C (2004) GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279(48):50176–50180. doi:10.1074/jbc.C400412200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25(22):9973–9984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Uchida Y, Ohshima T, Yamashita N, Ogawara M, Sasaki Y, Nakamura F, Goshima Y (2009) Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32. J Biol Chem 284(40):27393–27401. doi:10.1074/jbc.M109.000240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K, Kolattukudy P, Honnorat J, Goshima Y (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: Implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells 10(2):165–179

    Article  CAS  PubMed  Google Scholar 

  29. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3[beta] regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149. doi:10.1016/j.cell.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  30. Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ, Nikolic M, Sutherland C (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281(24):16591–16598. doi:10.1074/jbc.M513344200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hou ST, Jiang SX, Aylsworth A, Ferguson G, Slinn J, Hu H, Leung T, Kappler J, Kaibuchi K (2009) CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity. J Neurochem 111(3):870–881

    Article  CAS  PubMed  Google Scholar 

  32. Brittain JM, Chen L, Wilson SM, Brustovetsky T, Gao X, Ashpole NM, Molosh AI, You H, Hudmon A, Shekhar A, White FA, Zamponi GW, Brustovetsky N, Chen J, Khanna R (2011) Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J Biol Chem 286(43):37778–37792. doi:10.1074/jbc.M111.255455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Brittain JM, Pan R, You H, Brustovetsky T, Brustovetsky N, Zamponi GW, Lee WH, Khanna R (2012) Disruption of NMDAR-CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Channels (Austin) 6(1):52–9

    Article  CAS  Google Scholar 

  34. Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H, Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5(9):819–826

    Article  CAS  PubMed  Google Scholar 

  35. Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T, Kaibuchi K (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25(22):9920–9935. doi:10.1128/MCB.25.22.9920-9935.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 93(6):1371–1382

    Article  CAS  PubMed  Google Scholar 

  37. Lykissas MG, Batistatou AK, Charalabopoulos KA, Beris AE (2007) The role of neurotrophins in axonal growth, guidance, and regeneration. Curr Neurovasc Res 4(2):143–151

    Article  CAS  PubMed  Google Scholar 

  38. Arimura N, Kimura T, Nakamuta S, Taya S, Funahashi Y, Hattori A, Shimada A, Ménager C, Kawabata S, Fujii K, Iwamatsu A, Segal RA, Fukuda M, Kaibuchi K (2009) Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27. Dev Cell 16(5):675–686. doi:10.1016/j.devcel.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  39. Rahajeng J, Giridharan SS, Naslavsky N, Caplan S (2010) Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 85(42):31918–22

    Article  Google Scholar 

  40. Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K (2012) Opening Pandora’s jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol 7(6):749–771. doi:10.2217/fnl.12.68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Beyreuther B, Stohr T, Freitag J (2009) Method for identifying crmp modulators. Google Patents

  42. Park KD, Kim D, Reamtong O, Eyers C, Gaskell SJ, Liu R, Kohn H (2011) Identification of a lacosamide binding protein using an affinity bait and chemical reporter strategy: 14-3-3 zeta. J Am Chem Soc 133(29):11320–11330. doi:10.1021/ja2034156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang Y, Brittain JM, Jarecki BW, Park KD, Wilson SM, Wang B, Hale R, Meroueh SO, Cummins TR, Khanna R (2010) In silico docking and electrophysiological characterization of lacosamide binding sites on collapsin response mediator protein 2 (CRMP-2) identifies a pocket important in modulating sodium channel slow inactivation. J Biol Chem 285(33):25296–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: Current status and future challenges. Proteins 65(1):15–26. doi:10.1002/prot.21082

    Article  CAS  PubMed  Google Scholar 

  45. Delorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy. Pharmacol Ther 105(3):229–266. doi:10.1016/j.pharmthera.2004.10.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wang Y, Khanna R (2011) Calcium channels are not affected by the anti-epileptic drug lacosamide. Transl Neurosci 2(1):13–22

    Article  PubMed Central  PubMed  Google Scholar 

  47. Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32(11):1075–1088

    Article  CAS  PubMed  Google Scholar 

  48. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Wilson SM, Xiong W, Wang Y, Ping X, Head JD, Brittain JM, Gagare PD, Ramachandran PV, Jin X, Khanna R (2012) Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience 210:451–466. doi:10.1016/j.neuroscience.2012.02.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wolff C, Carrington B, Varrin-Doyer M, Vandendriessche A, Van der Perren C, Famelart M, Gillard M, Foerch P, Rogemond V, Honnorat J, Lawson A, Miller K (2012) Drug binding assays do not reveal specific binding of lacosamide to collapsin response mediator protein 2 (CRMP-2). CNS Neurosci Ther 18(6):493–500. doi:10.1111/j.1755-5949.2012.00313.x

    Article  CAS  PubMed  Google Scholar 

  51. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198(2):268–277

    Article  CAS  PubMed  Google Scholar 

  52. Phizicky EM, Fields S (1995) Protein-protein interactions: Methods for detection and analysis. Microbiol Rev 59(1):94–123

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100. doi:10.1038/ncomms1093

    Article  PubMed  Google Scholar 

  54. Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266. doi:10.1056/NEJMra022308

    Article  PubMed  Google Scholar 

  55. Salin P, Tseng GF, Hoffman S, Parada I, Prince DA (1995) Axonal sprouting in layer V pyramidal neurons of chronically injured cerebral cortex. J Neurosci: Off J Soc Neurosci 15(12):8234–8245

    CAS  Google Scholar 

  56. Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci: Off J Soc Neurosci 21(21):8523–8537

    CAS  Google Scholar 

  57. Kharatishvili I, Nissinen JP, McIntosh TK, Pitkanen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neuroscience 140(2):685–697. doi:10.1016/j.neuroscience.2006.03.012

    Article  CAS  PubMed  Google Scholar 

  58. Jin X, Prince DA, Huguenard JR (2006) Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats. J Neurosci 26(18):4891–4900

    Article  CAS  PubMed  Google Scholar 

  59. Graber KD, Prince DA (2004) A critical period for prevention of posttraumatic neocortical hyperexcitability in rats. Ann Neurol 55(6):860–870. doi:10.1002/ana.20124

    Article  PubMed  Google Scholar 

  60. Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F (2009) Epilepsy following cortical injury: Cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50:30–40. doi:10.1111/j.1528-1167.2008.02008.x

    Article  PubMed Central  PubMed  Google Scholar 

  61. McKinney RA, Debanne D, Gahwiler BH, Thompson SM (1997) Lesion-induced axonal sprouting and hyperexcitability in the hippocampus in vitro: Implications for the genesis of posttraumatic epilepsy. Nat Med 3(9):990–996

    Article  CAS  PubMed  Google Scholar 

  62. Czech T, Yang JW, Csaszar E, Kappler J, Baumgartner C, Lubec G (2004) Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy. Neurochem Res 29(12):2189–2196

    Article  CAS  PubMed  Google Scholar 

  63. Bretin S, Reibel S, Charrier E, Maus-Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V, Premont J, Honnorat J, Gauchy C (2005) Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 486(1):1–17. doi:10.1002/cne.20465

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, Wang KK (2007) Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 24(3):460–472. doi:10.1089/neu.2006.0078

    Article  PubMed  Google Scholar 

  65. Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24(41):8994–9004

    Article  CAS  PubMed  Google Scholar 

  66. Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K, Ihara Y, Mikoshiba K, Kolattukudy P, Honnorat J, Goshima Y (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: Implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells: Devoted Mol Cell Mech 10(2):165–179. doi:10.1111/j.1365-2443.2005.00827.x

    Article  CAS  Google Scholar 

  67. Sato Y, Ishida-Nakajima W, Kawamura M, Miura S, Oguma R, Arai H, Takahashi T (2011) Hypoxia-ischemia induces hypo-phosphorylation of collapsin response mediator protein 2 in a neonatal rat model of periventricular leukomalacia. Brain Res 1386:165–174. doi:10.1016/j.brainres.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  68. Wilson SM, Yeon SK, Yang XF, Park KD, Khanna R (2014) Differential regulation of collapsin response mediator protein 2 (CRMP2) phosphorylation by GSK3ß and CDK5 following traumatic brain injury. Front Cell Neurosci 8:14. doi:10.3389/fncel.2014.00135

    Google Scholar 

  69. Lee C-Y, Jaw T, Tseng H-C, Chen IC, Liou H-H (2012) Lovastatin modulates glycogen synthase kinase-3β pathway and inhibits mossy fiber sprouting after pilocarpine-induced status epilepticus. PLoS One 7(6):e38789. doi:10.1371/journal.pone.0038789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Brandt C, Heile A, Potschka H, Stoehr T, Löscher W (2006) Effects of the novel antiepileptic drug lacosamide on the development of amygdala kindling in rats. Epilepsia 47(11):1803–1809. doi:10.1111/j.1528-1167.2006.00818.x

    Article  CAS  PubMed  Google Scholar 

  71. Loscher W, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62(4):668–700. doi:10.1124/pr.110.003046

    Article  PubMed Central  PubMed  Google Scholar 

  72. Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50(1–2):105–123

    Article  CAS  PubMed  Google Scholar 

  73. Loscher W, Honack D, Rundfeldt C (1998) Antiepileptogenic effects of the novel anticonvulsant levetiracetam (ucb L059) in the kindling model of temporal lobe epilepsy. J Pharmacol Exp Ther 284(2):474–479

    CAS  PubMed  Google Scholar 

  74. Wasterlain CG, Stohr T, Matagne A (2011) The acute and chronic effects of the novel anticonvulsant lacosamide in an experimental model of status epilepticus. Epilepsy Res 94(1–2):10–17. doi:10.1016/j.eplepsyres.2010.12.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Wang B, Dawson H, Wang H, Kernagis D, Kolls BJ, Yao L, Laskowitz DT (2012) Lacosamide improves outcome in a murine model of traumatic brain injury. Neurocrit Care. doi:10.1007/s12028-012-9808-8

    Google Scholar 

  76. Pitkanen A, Immonen R, Ndode-Ekane X, Grohn O, Stohr T, Nissinen J (2014) Effect of lacosamide on structural damage and functional recovery after traumatic brain injury in rats. Epilepsy Res 108(4):653–665. doi:10.1016/j.eplepsyres.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  77. Licko T, Seeger N, Zellinger C, Russmann V, Matagne A, Potschka H (2013) Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia. doi:10.1111/epi.12196

    PubMed  Google Scholar 

  78. Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93(1):437–453. doi:10.1152/jn.00777.2004

    Article  PubMed  Google Scholar 

  79. Heng K, Haney MM, Buckmaster PS (2013) High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia 54(9):1535–1541. doi:10.1111/epi.12246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Verrotti A, Loiacono G, Pizzolorusso A, Parisi P, Bruni O, Luchetti A, Zamponi N, Cappanera S, Grosso S, Kluger G, Janello C, Franzoni E, Elia M, Spalice A, Coppola G, Striano P, Pavone P, Savasta S, Viri M, Romeo A, Aloisi P, Gobbi G, Ferretti A, Cusmai R, Curatolo P (2013) Lacosamide in pediatric and adult patients: comparison of efficacy and safety. Seizure: J Br Epilepsy Assoc 22(3):210–216. doi:10.1016/j.seizure.2012.12.009

    Article  Google Scholar 

  81. Kim JS, Kim H, Lim BC, Chae JH, Choi J, Kim KJ, Hwang YS, Hwang H (2013) Lacosamide as an adjunctive therapy in pediatric patients with refractory focal epilepsy. Brain Dev. doi:10.1016/j.braindev.2013.07.003

    Google Scholar 

  82. Grosso S, Parisi P, Spalice A, Verrotti A, Balestri P (2014) Efficacy and safety of lacosamide in infants and young children with refractory focal epilepsy. Eur J Paediatr Neurol: EJPN: Off J Eur Paediatr Neurol Soc 18(1):55–59. doi:10.1016/j.ejpn.2013.08.006

    Article  Google Scholar 

  83. Tomson T, Landmark CJ, Battino D (2013) Antiepileptic drug treatment in pregnancy: Changes in drug disposition and their clinical implications. Epilepsia 54(3):405–414. doi:10.1111/epi.12109

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Khanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, S.M., Khanna, R. Specific Binding of Lacosamide to Collapsin Response Mediator Protein 2 (CRMP2) and Direct Impairment of its Canonical Function: Implications for the Therapeutic Potential of Lacosamide. Mol Neurobiol 51, 599–609 (2015). https://doi.org/10.1007/s12035-014-8775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8775-9

Keywords

Navigation