Skip to main content

Advertisement

Log in

Gas Sensing in Nematodes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nearly all animals are capable of sensing changes in environmental oxygen (O2) and carbon dioxide (CO2) levels, which can signal the presence of food, pathogens, conspecifics, predators, or hosts. The free-living nematode Caenorhabditis elegans is a powerful model system for the study of gas sensing. C. elegans detects changes in O2 and CO2 levels and integrates information about ambient gas levels with other internal and external cues to generate context-appropriate behavioral responses. Due to its small nervous system and amenability to genetic and genomic analyses, the functional properties of its gas-sensing microcircuits can be dissected with single-cell resolution, and signaling molecules and natural genetic variations that modulate gas responses can be identified. Here, we discuss the neural basis of gas sensing in C. elegans, and highlight changes in gas-evoked behaviors in the context of other sensory cues and natural genetic variations. We also discuss gas sensing in other free-living nematodes and parasitic nematodes, focusing on how gas-sensing behavior has evolved to mediate species-specific behavioral requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bonora M, Boule M (1994) Effects of hypercapnia and hypoxia on inspiratory and expiratory diaphragmatic activity in conscious cats. J Appl Physiol 77(4):1644–1652. doi:10.1203/01.PDR.0000117841.81730.2B

    CAS  PubMed  Google Scholar 

  2. Mortola JP, Lanthier C (1996) The ventilatory and metabolic response to hypercapnia in newborn mammalian species. Respir Physiol 103(3):263–270

    CAS  PubMed  Google Scholar 

  3. Vovk A, Cunningham DA, Kowalchuk JM, Paterson DH, Duffin J (2002) Cerebral blood flow responses to changes in oxygen and carbon dioxide in humans. Can J Physiol Pharmacol 80(8):819–827

    CAS  PubMed  Google Scholar 

  4. Azzam ZS, Sharabi K, Guetta J, Bank EM, Gruenbaum Y (2010) The physiological and molecular effects of elevated CO2 levels. Cell Cycle 9(8):1528–1532. doi:10.4161/cc.9.8.11196

    CAS  PubMed  Google Scholar 

  5. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc Lond B 314(1165):1–340

    CAS  Google Scholar 

  6. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7(2):e1001066. doi:10.1371/journal.pcbi.1001066

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Macosko EZ, Pokala N, Feinberg EH, Chalasani SH, Butcher RA, Clardy J, Bargmann CI (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458(7242):1171–1175. doi:10.1038/nature07886

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450(7166):63–70

    CAS  PubMed  Google Scholar 

  9. Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems. Neuron 76(1):82–97. doi:10.1016/j.neuron.2012.08.035

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Van Voorhies WA, Ward S (2000) Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol 203(Pt 16):2467–2478

    PubMed  Google Scholar 

  11. Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430(6997):317–322

    CAS  PubMed  Google Scholar 

  12. Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI (2006) A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biol 4(9):e274

    PubMed Central  PubMed  Google Scholar 

  13. Cheung BH, Cohen M, Rogers C, Albayram O, de Bono M (2005) Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 15(10):905–917

    CAS  PubMed  Google Scholar 

  14. Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Chang AJ, Bargmann CI (2008) Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(20):7321–7326. doi:10.1073/pnas.0802164105

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Coates JC, de Bono M (2002) Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419(6910):925–929

    CAS  PubMed  Google Scholar 

  17. Rogers C, Persson A, Cheung B, de Bono M (2006) Behavioral motifs and neural pathways coordinating O2 responses and aggregation in C. elegans. Curr Biol 16(7):649–659

    CAS  PubMed  Google Scholar 

  18. Cheung BH, Arellano-Carbajal F, Rybicki I, de Bono M (2004) Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior. Curr Biol 14(12):1105–1111

    CAS  PubMed  Google Scholar 

  19. Derbyshire ER, Marletta MA (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81:533–559. doi:10.1146/annurev-biochem-050410-100030

    CAS  PubMed  Google Scholar 

  20. Busch KE, Laurent P, Soltesz Z, Murphy RJ, Faivre O, Hedwig B, Thomas M, Smith HL, de Bono M (2012) Tonic signaling from O2 sensors sets neural circuit activity and behavioral state. Nat Neurosci 15(4):581–591. doi:10.1038/nn.3061

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Couto A, Oda S, Nikolaev VO, Soltesz Z, de Bono M (2013) In vivo genetic dissection of O2-evoked cGMP dynamics in a Caenorhabditis elegans gas sensor. Proc Natl Acad Sci U S A 110(35):E3301–E3310. doi:10.1073/pnas.1217428110

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403(6769):560–564

    CAS  PubMed  Google Scholar 

  23. de Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94(5):679–689

    PubMed  Google Scholar 

  24. McGrath PT, Rockman MV, Zimmer M, Jang H, Macosko EZ, Kruglyak L, Bargmann CI (2009) Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61(5):692–699. doi:10.1016/j.neuron.2009.02.012

    PubMed Central  CAS  PubMed  Google Scholar 

  25. de Bono M, Tobin DM, Davis MW, Avery L, Bargmann CI (2002) Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature 419(6910):899–903

    PubMed Central  PubMed  Google Scholar 

  26. Persson A, Gross E, Laurent P, Busch KE, Bretes H, de Bono M (2009) Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature 458(7241):1030–1033. doi:10.1038/nature07820

    CAS  PubMed  Google Scholar 

  27. Hallem EA, Sternberg PW (2008) Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(23):8038–8043

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Ratsch G, Miller DM, Horvitz HR, Sternberg PW, Ringstad N (2011) Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci U S A 108(1):254–259. doi:10.1073/pnas.1017354108

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Brandt JP, Aziz-Zaman S, Juozaityte V, Martinez-Velazquez LA, Petersen JG, Pocock R, Ringstad N (2012) A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity. PLoS ONE 7(3):e34014. doi:10.1371/journal.pone.0034014

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Guillermin ML, Castelletto ML, Hallem EA (2011) Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics 189(4):1327–1339. doi:10.1534/genetics.111.133835

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Carrillo MA, Guillermin ML, Rengarajan S, Okubo R, Hallem EA (2013) O2-sensing neurons control CO2 response in C. elegans. J Neurosci 33:9675–9683. doi:10.1523/JNEUROSCI.4541-12.2013

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(23):8044–8049

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z, Laurent P, de Bono M (2011) Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69(6):1099–1113. doi:10.1016/j.neuron.2011.02.023

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Smith ES, Martinez-Velazquez L, Ringstad N (2013) A chemoreceptor that detects molecular carbon dioxide. J Biol Chem 288(52):37071–37081. doi:10.1074/jbc.M113.517367

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Hu PJ (2007) Dauer. In WormBook, www.WormBook.org. doi:10.1895/wormbook.1.144.1

  36. Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, DeMarco SF, Sternberg PW (2011) A sensory code for host seeking in parasitic nematodes. Curr Biol 21(5):377–383. doi:10.1016/j.cub.2011.01.048

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957

    CAS  PubMed  Google Scholar 

  38. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl Cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci U S A 106(6):2041–2046

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48(20):4417–4422

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Kodama-Namba E, Fenk LA, Bretscher AJ, Gross E, Busch KE, de Bono M (2013) Cross-modulation of homeostatic responses to temperature, oxygen and carbon dioxide in C. elegans. PLoS Genet 9(12):e1004011. doi:10.1371/journal.pgen.1004011

    PubMed Central  PubMed  Google Scholar 

  41. Rodriguez M, Snoek LB, De Bono M, Kammenga JE (2013) Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet 29(6):367–374. doi:10.1016/j.tig.2013.01.010

    CAS  PubMed  Google Scholar 

  42. Powell-Coffman JA (2010) Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab 21(7):435–440. doi:10.1016/j.tem.2010.02.006

    CAS  PubMed  Google Scholar 

  43. Pocock R (2011) Invited review: decoding the microRNA response to hypoxia. Pflugers Arch 461(3):307–315. doi:10.1007/s00424-010-0910-5

    CAS  PubMed  Google Scholar 

  44. Gorr TA, Gassmann M, Wappner P (2006) Sensing and responding to hypoxia via HIF in model invertebrates. J Insect Physiol 52:349–364

    CAS  PubMed  Google Scholar 

  45. Sharabi K, Hurwitz A, Simon AJ, Beitel GJ, Morimoto RI, Rechavi G, Sznajder JI, Gruenbaum Y (2009) Elevated CO2 levels affect development, motility, and fertility and extend life span in Caenorhabditis elegans. Proc Natl Acad Sci U S A 106(10):4024–4029

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Liu T, Cai D (2013) Counterbalance between BAG and URX neurons via guanylate cyclases controls lifespan homeostasis in C. elegans. EMBO J 32:1529–1542

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Vadasz I, Dada LA, Briva A, Helenius IT, Sharabi K, Welch LC, Kelly AM, Grzesik BA, Budinger GR, Liu J, Seeger W, Beitel GJ, Gruenbaum Y, Sznajder JI (2012) Evolutionary conserved role of c-Jun-N-terminal kinase in CO2-induced epithelial dysfunction. PLoS ONE 7(10):e46696. doi:10.1371/journal.pone.0046696

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Qin H, Powell-Coffman JA (2004) The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Dev Biol 270(1):64–75

    CAS  PubMed  Google Scholar 

  49. Qin H, Zhai Z, Powell-Coffman JA (2006) The Caenorhabditis elegans AHR-1 transcription complex controls expression of soluble guanylate cyclase genes in the URX neurons and regulates aggregation behavior. Dev Biol 298(2):606–615

    CAS  PubMed  Google Scholar 

  50. Gramstrup Petersen J, Romanos TR, Juozaityte V, Riveiro AR, Hums I, Traunmuller L, Zimmer M, Pocock R (2013) EGL-13/SoxD specifies distinct O2 and CO2 sensory neuron fates in Caenorhabditis elegans. PLoS Genet 9(5):e1003511. doi:10.1371/journal.pgen.1003511

    PubMed Central  PubMed  Google Scholar 

  51. Felix MA, Duveau F (2012) Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biol 10:59. doi:10.1186/1741-7007-10-59

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Shtonda BB, Avery L (2006) Dietary choice behavior in Caenorhabditis elegans. J Exp Biol 209(Pt 1):89–102

    PubMed Central  PubMed  Google Scholar 

  53. Gloria-Soria A, Azevedo RB (2008) npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 18(21):1694–1699. doi:10.1016/j.cub.2008.09.043

    CAS  PubMed  Google Scholar 

  54. Styer KL, Singh V, Macosko E, Steele SE, Bargmann CI, Aballay A (2008) Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 322(5900):460–464. doi:10.1126/science.1163673

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Reddy KC, Andersen EC, Kruglyak L, Kim DH (2009) A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323(5912):382–384. doi:10.1126/science.1166527

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Milward K, Busch KE, Murphy RJ, de Bono M, Olofsson B (2011) Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 108(51):20672–20677. doi:10.1073/pnas.1106134109

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Bendesky A, Tsunozaki M, Rockman MV, Kruglyak L, Bargmann CI (2011) Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472(7343):313–318. doi:10.1038/nature09821

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Lee H, Choi MK, Lee D, Kim HS, Hwang H, Kim H, Park S, Paik YK, Lee J (2012) Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci 15(1):107–112. doi:10.1038/nn.2975

    CAS  Google Scholar 

  59. Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. In WormBook, www.WormBook.org. doi:10.1895/wormbook.1.37.1

  60. Riemann F, Schrage M (1988) Carbon dioxide as an attractant for the free-living marine nematode Adoncholaimus thalassophygas. Mar Biol 98:81–85

    Google Scholar 

  61. Bumbarger DJ, Crum J, Ellisman MH, Baldwin JG (2007) Three-dimensional fine structural reconstruction of the nose sensory structures of Acrobeles complexus compared to Caenorhabditis elegans (Nematoda: Rhabditida). J Morphol 268(8):649–663

    PubMed  Google Scholar 

  62. Ragsdale EJ, Ngo PT, Crum J, Ellisman MH, Baldwin JG (2009) Comparative, three-dimensional anterior sensory reconstruction of Aphelenchus avenae (Nematoda: Tylenchomorpha). J Comp Neurol 517(5):616–632

    PubMed  Google Scholar 

  63. Liu J, Poinar GO Jr, Berry RE (2000) Control of insect pests with entomopathogenic nematodes: the impact of molecular biology and phylogenetic reconstruction. Annu Rev Entomol 45:287–306

    CAS  PubMed  Google Scholar 

  64. Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22(11):R430–R431. doi:10.1016/j.cub.2012.03.047

    CAS  PubMed  Google Scholar 

  65. Crook M (2014) The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol 44:1–8

    PubMed Central  PubMed  Google Scholar 

  66. Gaugler R, LeBeck L, Nakagaki B, Boush GM (1980) Orientation of the entomogenous nematode Neoaplectana carpocapsae to carbon dioxide. Environ Entomol 9:649–652

    Google Scholar 

  67. O'Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology 127(Pt 4):375–385

    PubMed  Google Scholar 

  68. Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA (2012) Olfaction shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci U S A 109(35):E2324–E2333. doi:10.1073/pnas.1211436109

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Robinson AF (1995) Optimal release rates for attracting Meloidogyne incognita, Rotylenchulus reniformis, and other nematodes to carbon dioxide in sand. J Nematol 27:42–50

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Gaugler R, Campbell JF, Gupta P (1991) Characterization and basis of enhanced host-finding in a genetically improved strain of Steinernema carpocapsae. J Invertebr Pathol 57:234–241

    Google Scholar 

  71. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    CAS  PubMed  Google Scholar 

  72. Ali JG, Alborn HT, Stelinski LL (2010) Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J Chem Ecol 36:361–368

    CAS  PubMed  Google Scholar 

  73. Kollner TG, Held M, Lenk C, Hiltpold I, Turlings TC, Gershenzon J, Degenhardt J (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20(2):482–494. doi:10.1105/tpc.107.051672

    PubMed Central  PubMed  Google Scholar 

  74. Laznik Z, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134:349–355

    CAS  PubMed  Google Scholar 

  75. Turlings TC, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:51–60

    CAS  Google Scholar 

  76. Jasmer DP, Goverse A, Smant G (2003) Parasitic nematode interactions with mammals and plants. Annu Rev Phytopathol 41:245–270

    CAS  PubMed  Google Scholar 

  77. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. doi:10.1038/nrmicro3109

    CAS  PubMed  Google Scholar 

  78. Rasmann S, Ali JG, Helder J, van der Putten WH (2012) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol. doi:10.1007/s10886-012-0118-6

    PubMed  Google Scholar 

  79. Pline M, Dusenbery DB (1987) Responses of plant-parasitic nematode Meloidogyne incognita to carbon dioxide determined by video camera computer tracking. J Chem Ecol 13:873–888

    CAS  PubMed  Google Scholar 

  80. Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99:26–35

    CAS  Google Scholar 

  81. Boatin BA, Basanez MG, Prichard RK, Awadzi K, Barakat RM, Garcia HH, Gazzinelli A, Grant WN, McCarthy JS, N'Goran EK, Osei-Atweneboana MY, Sripa B, Yang GJ, Lustigman S (2012) A research agenda for helminth diseases of humans: towards control and elimination. PLoS Negl Trop Dis 6(4):e1547. doi:10.1371/journal.pntd.0001547

    PubMed Central  PubMed  Google Scholar 

  82. Viney ME, Lok JB (2007) Strongyloides spp. In WormBook, www.WormBook.org. doi:10.1895/wormbook.1.141.1

  83. Sutherland I, Scott I (2010) Gastrointestinal Nematodes of Sheep and Cattle: Biology and Control. John Wiley & Sons, Chichester

    Google Scholar 

  84. Veglia F (1915) The anatomy and life-history of Haemonchus contortus (Rud.). Rep Dir Vet Res 3–4:347–500

    Google Scholar 

  85. Fairbairn D (1961) The in vitro hatching of Ascaris lumbricoides eggs. Can J Zool 39:153–162

    CAS  Google Scholar 

  86. Rogers WP (1960) The physiology of infective processes of nematode parasite; the stimulus from the animal host. Proc R Soc Lond B 152:367–386

    CAS  PubMed  Google Scholar 

  87. Sommerville RI (1964) Effect of carbon dioxide on the development of third-stage larvae of Haemonchus contortus in vitro. Nature 202:316–317

    CAS  PubMed  Google Scholar 

  88. Silverman PH, Podger KR (1964) In vitro exsheathment of some nematode infective larvae. Exp Parasitol 15(4):314–324

    CAS  PubMed  Google Scholar 

  89. Davey KG, Sommerville RI, Rogers WP (1982) The effect of ethoxyzolamide, an analogue of insect juvenile hormone, noradrenaline, and iodine on changes in the optical path difference in the excretory cells and oesophagus during exsheathment in Haemonchus contortus. Int J Parasitol 12:509–513

    CAS  PubMed  Google Scholar 

  90. Granzer M, Hass W (1991) Host-finding and host recognition of infective Ancylostoma caninum larvae. Int J Parasitol 21:429–440

    CAS  PubMed  Google Scholar 

  91. Sciacca J, Forbes WM, Ashton FT, Lombardini E, Gamble HR, Schad GA (2002) Response to carbon dioxide by the infective larvae of three species of parasitic nematodes. Parasitol Int 51(1):53–62

    CAS  PubMed  Google Scholar 

  92. Wu Y, Wawrzusin P, Senseney J, Fischer RS, Christensen R, Santella A, York AG, Winter PW, Waterman CM, Bao Z, Colon-Ramos DA, McAuliffe M, Shroff H (2013) Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nat Biotechnol 31(11):1032–1038. doi:10.1038/nbt.2713

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z, Colon-Ramos D,Shroff H (2011) Inverted selective plane illumination microscopy (iSPIM) enables coupled cellidentity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl AcadSci USA 108 (43):17708–17713. doi:10.1073/pnas.1108494108

  94. Schrodel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A (2013) Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat Methods 10:1013–1020. doi:10.1038/nmeth.2637

    PubMed  Google Scholar 

  95. Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR (2013) High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 110(45):E4266–E4273. doi:10.1073/pnas.1318325110

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431(7010):854–859

    CAS  PubMed  Google Scholar 

  97. Wasserman S, Salomon A, Frye MA (2013) Drosophila tracks carbon dioxide in flight. Curr Biol 23(4):301–306. doi:10.1016/j.cub.2012.12.038

    CAS  PubMed  Google Scholar 

  98. Turner SL, Ray A (2009) Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants. Nature 461(7261):277–281. doi:10.1038/nature08295

    CAS  PubMed  Google Scholar 

  99. Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A (2011) Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474(7349):87–91. doi:10.1038/nature10081

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Faucher CP, Hilker M, de Bruyne M (2013) Interactions of carbon dioxide and food odours in Drosophila: olfactory hedonics and sensory neuron properties. PLoS ONE 8(2):e56361. doi:10.1371/journal.pone.0056361

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Bracker LB, Siju KP, Varela N, Aso Y, Zhang M, Hein I, Vasconcelos ML, Grunwald Kadow IC (2013) Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila. Curr Biol 23(13):1228–1234. doi:10.1016/j.cub.2013.05.029

    PubMed  Google Scholar 

  102. Ashton FT, Li J, Schad GA (1999) Chemo- and thermosensory neurons: structure and function in animal parasitic nematodes. Vet Parasitol 84(3–4):297–316

    CAS  PubMed  Google Scholar 

  103. Chaisson KE, Hallem EA (2012) Chemosensory behaviors of parasites. Trends Parasitol 28(10):427–436. doi:10.1016/j.pt.2012.07.004

    CAS  PubMed  Google Scholar 

  104. Bumbarger DJ, Wijeratne S, Carter C, Crum J, Ellisman MH, Baldwin JG (2009) Three-dimensional reconstruction of the amphid sensilla in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J Comp Neurol 512(2):271–281

    PubMed Central  PubMed  Google Scholar 

  105. Li J, Zhu X, Boston R, Ashton FT, Gamble HR, Schad GA (2000) Thermotaxis and thermosensory neurons in infective larvae of Haemonchus contortus, a passively ingested nematode parasite. J Comp Neurol 424(1):58–73

    CAS  PubMed  Google Scholar 

  106. Bhopale VM, Kupprion EK, Ashton FT, Boston R, Schad GA (2001) Ancylostoma caninum: the finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Exp Parasitol 97(2):70–76

    CAS  PubMed  Google Scholar 

  107. Dillman AR, Mortazavi A, Sternberg PW (2012) Incorporating genomics into the toolkit of nematology. J Nematol 44:191–205

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Lok JB (2012) Nucleic acid transfection and transgenesis in parasitic nematodes. Parasitology 139:574–588. doi:10.1017/S0031182011001387

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743. doi:10.1038/nmeth.2532

    CAS  PubMed  Google Scholar 

  110. Lo TW, Pickle CS, Lin S, Ralston EJ, Gurling M, Schartner CM, Bian Q, Doudna JA, Meyer BJ (2013) Heritable genome editing using TALENs and CRISPR/Cas9 to engineer precise insertions and deletions in evolutionarily diverse nematode species. Genetics 195(2):331–348. doi:10.1534/genetics.113.155382

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Chiu H, Schwartz HT, Antoshechkin I, Sternberg PW (2013) Transgene-free genome editing in Caenorhabditis elegans using CRISPR-Cas. Genetics 195(3):1167–1171. doi:10.1534/genetics.113.155879

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Diawara A, Schwenkenbecher JM, Kaplan RM, Prichard RK (2013) Molecular and biological diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted helminths. Am J Trop Med Hyg 88(6):1052–1061. doi:10.4269/ajtmh.12-0484

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Manon Guillermin, Sophie Rengarajan, Kristen Yankura, and Michelle Castelletto for the helpful comments on the manuscript. M.A.C. is a National Science Foundation Graduate Research Fellow and a Eugene V. Cota-Robles Fellow. E.A.H. is a MacArthur Fellow, a McKnight Scholar, a Rita Allen Foundation Scholar, and a Searle Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Hallem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo, M.A., Hallem, E.A. Gas Sensing in Nematodes. Mol Neurobiol 51, 919–931 (2015). https://doi.org/10.1007/s12035-014-8748-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8748-z

Keywords

Navigation