Skip to main content
Log in

Firing Pattern Modulation Through SK Channel Current Increase Underlies Neuronal Survival in an Organotypic Slice Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) are vulnerable to excitotoxicity in Parkinson’s disease (PD). Neurotoxic stimuli may alter the firing patterns of DA neurons. However, whether firing pattern change underlies neurotoxic stress-induced death of DA neurons remains unknown. In this study, we established long-term cultures of SNc organotypic slices and used this model to evaluate the neurotoxic effects on firing mode and DA neuronal viability following chronic treatment with neurotoxin 6-hydroxydopamine (6-OHDA). Using whole-cell patch clamp to explore the intrinsic membrane properties and firing mode, we showed that chronic exposure to 6-OHDA raised the resting membrane potential of SNc DA neurons and altered their firing pattern, causing it to switch from a regular rhythmic pacemaking firing to an irregular bursting. This firing pattern change correlated with increased death of SNc DA neurons. The 6-OHDA-induced firing pattern change correlated with an increase in the activity of the small conductance calcium-activated potassium channel (SK channel) and with an increase in both the level and activity of protein phosphatase 2A (PP2A). Activation of the SK channel by its agonist 1-EBIO attenuated 6-OHDA-induced firing irregularity and death, while the SK channel antagonist apamin exacerbated the toxic effects of 6-OHDA. Thus, SK channel current is a substantial element in sustaining the SNc DA neuronal rhythmic pacemaking and homeostasis and perturbing SK channel activity underlies 6-OHDA-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldberg JA, Guzman JN, Estep CM, Ilijic E, Kondapalli J, Sanchez-Padilla J, Surmeier DJ (2012) Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat Neurosci 15(10):1414–1421. doi:10.1038/nn.3209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29(35):11011–11019. doi:10.1523/JNEUROSCI.2519-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66(5):345–353

    Article  CAS  PubMed  Google Scholar 

  4. Blythe SN, Wokosin D, Atherton JF, Bevan MD (2009) Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J Neurosci 29(49):15531–15541. doi:10.1523/JNEUROSCI.2961-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mrejeru A, Wei A, Ramirez JM (2011) Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol 589(10):2497–2514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cho S, Wood A, Bowlby MR (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lu H-X, Levis H, Liu Y, Parker T (2011) Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain Res Bull 84(2):169–173. doi:10.1016/j.brainresbull.2010.12.001

    Article  PubMed  Google Scholar 

  8. Kearns SM, Scheffler B, Goetz AK, Lin DD, Baker HD, Roper SN, Mandel RJ, Steindler DA (2006) A method for a more complete in vitro Parkinson’s model: slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit. J Neurosci Methods 157(1):1–9. doi:10.1016/j.jneumeth.2006.03.020

    Article  PubMed  Google Scholar 

  9. De Simoni A, Yu LM (2006) Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1(3):1439–1445. doi:10.1038/nprot.2006.228

    Article  PubMed  Google Scholar 

  10. Wang S, Ren P, Li X, Guan Y, Zhang YA (2011) 17beta-estradiol protects dopaminergic neurons in organotypic slice of mesencephalon by MAPK-mediated activation of anti-apoptosis gene BCL2. J Mol Neurosci 45(2):236–245. doi:10.1007/s12031-011-9500-z

    Article  CAS  PubMed  Google Scholar 

  11. Nihira T, Yasuda T, Hirai Y, Shimada T, Mizuno Y, Mochizuki H (2011) Adeno-associated viral vector-mediated gene transduction in mesencephalic slice culture. J Neurosci Methods 201(1):55–60. doi:10.1016/j.jneumeth.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  12. Jourdi H, Hamo L, Oka T, Seegan A, Baudry M (2009) BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+ -induced toxicity in cultured hippocampal and mesencephalic slices. Neuropharmacology 56(5):876–885. doi:10.1016/j.neuropharm.2009.01.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yang H, Shew WL, Roy R, Plenz D (2012) Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J Neurosci 32(3):1061–1072. doi:10.1523/jneurosci.2771-11.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Masurkar AV, Chen WR (2011) Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience 192:231–246. doi:10.1016/j.neuroscience.2011.06.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Xue WN, Wang Y, He SM, Wang XL, Zhu JL, Gao GD (2012) SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials. Brain Struct Funct 217(2):379–394. doi:10.1007/s00429-011-0361-6

    Article  CAS  PubMed  Google Scholar 

  16. Ibanez-Sandoval O, Carrillo-Reid L, Galarraga E, Tapia D, Mendoza E, Gomora JC, Aceves J, Bargas J (2007) Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease. J Neurophysiol 98(4):2311–2323. doi:10.1152/jn.00620.2007

    Article  CAS  PubMed  Google Scholar 

  17. Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Brain Res Rev 25(3):312–334

    Article  CAS  PubMed  Google Scholar 

  18. Bond CT, Maylie J, Adelman JP (2005) SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15(3):305–311. doi:10.1016/j.conb.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  19. Adelman JP, Maylie J, Sah P (2012) Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 74:245–269. doi:10.1146/annurev-physiol-020911-153336

    Article  CAS  PubMed  Google Scholar 

  20. Aumann TD, Gantois I, Egan K, Vais A, Tomas D, Drago J, Horne MK (2008) SK channel function regulates the dopamine phenotype of neurons in the substantia nigra pars compacta. Exp Neurol 213(2):419–430. doi:10.1016/j.expneurol.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  21. Deignan J, Lujan R, Bond C, Riegel A, Watanabe M, Williams JT, Maylie J, Adelman JP (2012) SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience 217:67–76. doi:10.1016/j.neuroscience.2012.04.053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Benitez BA, Belalcazar HM, Anastasia A, Mamah DT, Zorumski CF, Masco DH, Herrera DG, de Erausquin GA (2011) Functional reduction of SK3-mediated currents precedes AMPA-receptor-mediated excitotoxicity in dopaminergic neurons. Neuropharmacology 60(7–8):1176–1186. doi:10.1016/j.neuropharm.2010.10.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Berretta N, Freestone PS, Guatteo E, de Castro D, Geracitano R, Bernardi G, Mercuri NB, Lipski J (2005) Acute effects of 6-hydroxydopamine on dopaminergic neurons of the rat substantia nigra pars compacta in vitro. Neurotoxicology 26(5):869–881. doi:10.1016/j.neuro.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  24. Wadsworth JDF, Torelli S, Doorty KB, Strong PN (1997) Structural diversity among subtypes of small-conductance Ca2+-activated potassium channels. Arch Biochem Biophys 346(1):151–160. doi:10.1006/abbi.1997.0280

    Article  CAS  PubMed  Google Scholar 

  25. Chung CY, Koprich JB, Endo S, Isacson O (2007) An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson’s disease. J Neurosci 27(31):8314–8323. doi:10.1523/jneurosci.1972-07.2007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cucchiaroni ML, Freestone PS, Berretta N, Viscomi MT, Bisicchia E, Okano H, Molinari M, Bernardi G, Lipski J, Mercuri NB, Guatteo E (2011) Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures—evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by alpha-1 adrenergic receptors. Eur J Neurosci 33(9):1622–1636. doi:10.1111/j.1460-9568.2011.07659.x

    Article  PubMed  Google Scholar 

  27. Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15(9):1272–1280. doi:10.1038/nn.3185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bezard E, Gross CE, Brotchie JM (2003) Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 26(4):215–221. doi:10.1016/s0166-2236(03)00038-9

    Article  CAS  PubMed  Google Scholar 

  29. Bezard E, Boraud T, Bioulac B, Gross CE (1999) Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci 11(6):2167–2170

    Article  CAS  PubMed  Google Scholar 

  30. Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 8(5):642–649. doi:10.1038/nn1449

    Article  CAS  PubMed  Google Scholar 

  31. Allen D, Nakayama S, Kuroiwa M, Nakano T, Palmateer J, Kosaka Y, Ballesteros C, Watanabe M, Bond CT, Lujan R, Maylie J, Adelman JP, Herson PS (2011) SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J Cereb Blood Flow Metab 31(12):2302–2312. doi:10.1038/jcbfm.2011.90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gu N, Vervaeke K, Hu H, Storm JF (2005) Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol 566(Pt 3):689–715. doi:10.1113/jphysiol.2005.086835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dolga AM, Culmsee C (2012) Protective roles for potassium SK/K(Ca)2 channels in microglia and neurons. Front Pharmacol 3:196. doi:10.3389/fphar.2012.00196

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ji H, Hougaard C, Herrik KF, Strobaek D, Christophersen P, Shepard PD (2009) Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci 29(9):1883–1895. doi:10.1111/j.1460-9568.2009.06735.x

    Article  PubMed  Google Scholar 

  35. Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liegeois JF, Scuvee-Moreau J, Seutin V (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur J Neurosci 22(12):3111–3121. doi:10.1111/j.1460-9568.2005.04484.x

    Article  PubMed  Google Scholar 

  36. Fakler B, Adelman JP (2008) Control of K(Ca) channels by calcium nano/microdomains. Neuron 59(6):873–881. doi:10.1016/j.neuron.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  37. Sapolsky RM (2001) Cellular defenses against excitotoxic insults. J Neurochem 76(6):1601–1611. doi:10.1046/j.1471-4159.2001.00203.x

    Article  CAS  PubMed  Google Scholar 

  38. Fay AJ, Qian X, Jan YN, Jan LY (2006) SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci U S A 103(46):17548–17553. doi:10.1073/pnas.0607914103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dufour MA, Woodhouse A, Goaillard JM (2014) Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J Neurosci Res. doi:10.1002/jnr.23382

    PubMed  Google Scholar 

  40. Wolfart J, Neuhoff H, Franz O, Roeper J (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J Neurosci 21(10):3443–3456

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Zixu Mao from the Department of Pharmacology, Emory University School of Medicine for his advice and critical reading of the manuscript. The authors appreciate the work by MAXC (maxchelator.stanford.edu) in calculating calcium concentration. This work was supported by National Basic Research Program of China grant (973 Program, grant no. 2011CB510002) and National Natural Science Foundation of China grant (grant no. 31371400) to Qian Yang.

Conflict of Interest

The authors have no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Additional information

Yuan Wang, Liang Qu, and Xue-Lian Wang contributed equally to this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. 1

The viability of PC12 cells following 6-OHDA treatment and modulation of SK channel activity. A. Effects of modulation of SK channel activity on 6-OHDA-induced death. A representative image of TUNEL assay of PC12 cells treated with 6-OHDA (40 μM, 18 hrs) with or without 1-EBIO (10 μM, 18 hrs) or apamin (100 nM, 18 hrs) cotreatment (green: TUNEL staining; blue: DAPI; scale bar: 100 μm). B. Percentages of cells that are TUNEL positive following 6-OHDA treatment. PC12 cells were treated as described in A and scored for TUNEL positive percentage (averages are given as mean ± S.D). C. Quantification of PC12 cell viability following 6-OHDA treatment. PC12 cell viability was assessed by MTT analysis following treatment as described in A. Bars are mean ± S.D. (one-way ANOVA with Newman-Keuls Multiple Comparison Test: *P < 0.01 vs. control; # P < 0.05 vs. 6-OHDA) (GIF 79 kb)

High resolution image (TIFF 750 kb)

Fig. 2

The effect of SK channel on 6-OHDA toxicity revealed by immunohistochemistry analysis. A Fluorescent images of TH (green) in cultured ventral mesencephalic slice: a control group, b 6-OHDA (25 μM), c 6-OHDA with Apamin (100 nM), d 6-OHDA with 1-EBIO (10 nM). Scare bar = 25 μm. B Quantitative analysis of the number of TH positive cells in different groups. Bars are mean ± S.D. (one-way ANOVA with Newman-Keuls Multiple Comparison Test: *P < 0.05 vs. control, # P < 0.05 vs. 6-OHDA) (GIF 356 kb)

High resolution image (TIFF 33381 kb)

Fig. 3

Plots of Ca2+ channel current versus time in SNc neurons, showing the increase of current amplitude induced by 0.5 mM 6-OHDA exposure (n = 8) (GIF 48 kb)

High resolution image (TIFF 17702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qu, L., Wang, XL. et al. Firing Pattern Modulation Through SK Channel Current Increase Underlies Neuronal Survival in an Organotypic Slice Model of Parkinson’s Disease. Mol Neurobiol 51, 424–436 (2015). https://doi.org/10.1007/s12035-014-8728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8728-3

Keywords

Navigation