Skip to main content
Log in

REM Sleep Deprivation Reverses Neurochemical and Other Depressive-Like Alterations Induced by Olfactory Bulbectomy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is compelling evidence that sleep deprivation (SD) is an effective strategy in promoting antidepressant effects in humans, whereas few studies were performed in relevant animal models of depression. Acute administration of antidepressants in humans and rats generates a quite similar effect, i.e., suppression of rapid eye movement (REM) sleep. Then, we decided to investigate the neurochemical alterations generated by a protocol of rapid eye movement sleep deprivation (REMSD) in the notably known animal model of depression induced by the bilateral olfactory bulbectomy (OBX). REMSD triggered antidepressant mechanisms such as the increment of brain-derived neurotrophic factor (BDNF) levels, within the substantia nigra pars compacta (SNpc), which were strongly correlated to the swimming time (r = 0.83; P < 0.0001) and hippocampal serotonin (5-HT) content (r = 0.66; P = 0.004). Moreover, there was a strong correlation between swimming time and hippocampal 5-HT levels (r = 0.70; P = 0.003), strengthen the notion of an antidepressant effect associated to REMSD in the OBX rats. In addition, REMSD robustly attenuated the hippocampal 5-HT deficiency produced by the OBX procedure. Regarding the rebound (REB) period, we observed the occurrence of a sustained antidepressant effect, indicated mainly by the swimming and climbing times which could be explained by the maintenance of the increased nigral BDNF expression. Hence, hippocampal 5-HT levels remained enhanced in the OBX group after this period. We suggested that the neurochemical complexity inflicted by the OBX model, counteracted by REMSD, is directly correlated to the nigral BDNF expression and hippocampal 5-HT levels. The present findings provide new information regarding the antidepressant mechanisms triggered by REMSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schulte W (1966) Kombinierte Psycho- und Pharmakotherapie bei Melancholikern. Probleme der pharmakopsychiatrischen Kombinations- und Langzeitbehandlung. Karger

  2. Gorgulu Y, Caliyurt O (2009) Rapid antidepressant effects of sleep deprivation therapy correlates with serum BDNF changes in major depression. Brain Res Bull 80(3):158–162

    Article  PubMed  CAS  Google Scholar 

  3. Landsness EC, Goldstein MR, Peterson MJ, Tononi G, Benca RM (2011) Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res 45(8):1019–1026. doi:10.1016/j.jpsychires.2011.02.003

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kreuzer PM, Langguth B, Schecklmann M, Eichhammer P, Hajak G, Landgrebe M (2012) Can repetitive transcranial magnetic stimulation prolong the antidepressant effects of sleep deprivation? Brain Stimul 5(2):141–147. doi:10.1016/j.brs.2011.02.005

    Article  PubMed  Google Scholar 

  5. Giedke H, Schwarzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6(5):361–377

    Article  PubMed  Google Scholar 

  6. Palagini L, Baglioni C, Ciapparelli A, Gemignani A, Riemann D (2013) REM sleep dysregulation in depression: state of the art. Sleep Med Rev 17(5):377–390. doi:10.1016/j.smrv.2012.11.001

    Article  PubMed  Google Scholar 

  7. Zant JC, Leenaars CH, Kostin A, Van Someren EJ, Porkka-Heiskanen T (2011) Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 1399:40–48. doi:10.1016/j.brainres.2011.05.008

    Article  PubMed  CAS  Google Scholar 

  8. Meyers N, Fromm S, Luckenbaugh DA, Drevets WC, Hasler G (2011) Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Res 194(1):73–78. doi:10.1016/j.pscychresns.2011.06.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Sei H, Saitoh D, Yamamoto K, Morita K, Morita Y (2000) Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res 877(2):387–390

    Article  PubMed  CAS  Google Scholar 

  10. Wang YQ, Tu ZC, Xu XY, Li R, Qu WM, Urade Y, Huang ZL (2012) Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats. J Neurochem 120(2):314–324. doi:10.1111/j.1471-4159.2011.07558.x

    Article  PubMed  Google Scholar 

  11. Vogel GW (1983) Evidence for REM sleep deprivation as the mechanism of action of antidepressant drugs. Prog Neuropsychopharmacol Biol Psychiatry 7(2–3):343–349

    Article  PubMed  CAS  Google Scholar 

  12. Giedke H, Geilenkirchen R, Hauser M (1992) The timing of partial sleep deprivation in depression. J Affect Disord 25(2):117–128

    Article  PubMed  CAS  Google Scholar 

  13. Adrien J (2002) Neurobiological bases for the relation between sleep and depression. Sleep Med Rev 6(5):341–351

    Article  PubMed  Google Scholar 

  14. Asikainen M, Toppila J, Alanko L, Ward DJ, Stenberg D, Porkka-Heiskanen T (1997) Sleep deprivation increases brain serotonin turnover in the rat. Neuroreport 8(7):1577–1582

    Article  PubMed  CAS  Google Scholar 

  15. Lima MMS, Andersen ML, Reksidler AB, Ferraz AC, Vital AM, Tufik S (2012) Paradoxical sleep deprivation modulates tyrosine hydroxylase expression in the nigrostriatal pathway and attenuates motor deficits induced by dopaminergic depletion. CNS Neurol Disord Drug Targets 11:359–368

    Article  PubMed  CAS  Google Scholar 

  16. Lima MM, Andersen ML, Reksidler AB, Silva A, Zager A, Zanata SM, Vital MA, Tufik S (2008) Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav Brain Res 188(2):406–411. doi:10.1016/j.bbr.2007.11.025

    Article  PubMed  CAS  Google Scholar 

  17. Proenca MB, Dombrowski PA, Da Cunha C, Fischer L, Ferraz AC, Lima MM (2014) Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 76 Pt A:118–126. doi:10.1016/j.neuropharm.2013.08.024

    Article  PubMed  CAS  Google Scholar 

  18. Guzman-Marin R, Alam MN, Szymusiak R, Drucker-Colin R, Gong H, McGinty D (2000) Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res 875(1–2):23–34

    Article  PubMed  CAS  Google Scholar 

  19. Tissier MH, Lainey E, Fattaccini CM, Hamon M, Adrien J (1993) Effects of ipsapirone, a 5-HT1A agonist, on sleep/wakefulness cycles: probable post-synaptic action. J Sleep Res 2(2):103–109

    Article  PubMed  Google Scholar 

  20. Vogel GW, Buffenstein A, Minter K, Hennessey A (1990) Drug effects on REM sleep and on endogenous depression. Neurosci Biobehav Rev 14(1):49–63

    Article  PubMed  CAS  Google Scholar 

  21. van Riezen H, Leonard BE (1990) Effects of psychotropic drugs on the behavior and neurochemistry of olfactory bulbectomized rats. Pharmacol Ther 47(1):21–34

    Article  PubMed  Google Scholar 

  22. Cairncross KD, Cox B, Forster C, Wren AF (1977) The olfactory bulbectomized rat: a simple model for detecting drugs with antidepressant potential [proceedings]. Br J Pharmacol 61(3):497P

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004(1–2):45–51

    Article  PubMed  CAS  Google Scholar 

  24. Broadhurst PL (1960) Experiments in psychogenetics. In: Einsenk HJ (ed) Experiments in personality. Routledge and Kegan Paul, London, pp 52–71

    Google Scholar 

  25. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391

    Article  PubMed  CAS  Google Scholar 

  26. Reneric JP, Bouvard M, Stinus L (2002) In the rat forced swimming test, chronic but not subacute administration of dual 5-HT/NA antidepressant treatments may produce greater effects than selective drugs. Behav Brain Res 136(2):521–532

    Article  PubMed  CAS  Google Scholar 

  27. Elfving B, Plougmann PH, Wegener G (2010) Detection of brain-derived neurotrophic factor (BDNF) in rat blood and brain preparations using ELISA: pitfalls and solutions. J Neurosci Methods 187(1):73–77. doi:10.1016/j.jneumeth.2009.12.017

    Article  PubMed  CAS  Google Scholar 

  28. Bertaina-Anglade V, La Rochelle CD, Scheller DK (2006) Antidepressant properties of rotigotine in experimental models of depression. Eur J Pharmacol 548(1–3):106–114. doi:10.1016/j.ejphar.2006.07.022

    Article  PubMed  CAS  Google Scholar 

  29. Artaiz I, Zazpe A, Innerarity A, Del Olmo E, Diaz A, Ruiz-Ortega JA, Castro E, Pena R, Labeaga L, Pazos A, Orjales A (2005) Preclinical pharmacology of F-98214-TA, a novel potent serotonin and norepinephrine uptake inhibitor with antidepressant and anxiolytic properties. Psychopharmacology (Berlin) 182(3):400–413. doi:10.1007/s00213-005-0087-3

    Article  CAS  Google Scholar 

  30. Breuer ME, Groenink L, Oosting RS, Buerger E, Korte M, Ferger B, Olivier B (2009) Antidepressant effects of pramipexole, a dopamine D3/D2 receptor agonist, and 7-OH-DPAT, a dopamine D3 receptor agonist, in olfactory bulbectomized rats. Eur J Pharmacol 616(1–3):134–140. doi:10.1016/j.ejphar.2009.06.029

    Article  PubMed  CAS  Google Scholar 

  31. Breuer ME, Groenink L, Oosting RS, Westenberg HG, Olivier B (2007) Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats. Biol Psychiatry 61(8):990–995. doi:10.1016/j.biopsych.2006.08.032

    Article  PubMed  CAS  Google Scholar 

  32. Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc A, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115(12):1621–1628. doi:10.1007/s00702-008-0115-7

    Article  PubMed  CAS  Google Scholar 

  33. Hendriksen H, Meulendijks D, Douma TN, Bink DI, Breuer ME, Westphal KG, Olivier B, Oosting RS (2012) Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats. Neuropharmacology 62(1):270–277. doi:10.1016/j.neuropharm.2011.07.018

    Article  PubMed  CAS  Google Scholar 

  34. Pudell C, Vicente BA, Delattre AM, Carabelli B, Mori MA, Suchecki D, Machado RB, Zanata SM, Visentainer JV, de Oliveira Santos OJ, Lima MM, Ferraz AC (2013) Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur J Neurosci. doi:10.1111/ejn.12406

    PubMed  Google Scholar 

  35. Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342(3):321–334. doi:10.1002/cne.903420302

    Article  PubMed  CAS  Google Scholar 

  36. Pierce RC, Bari AA (2001) The role of neurotrophic factors in psychostimulant-induced behavioral and neuronal plasticity. Rev Neurosci 12(2):95–110

    Article  PubMed  CAS  Google Scholar 

  37. Sokoloff P, Guillin O, Diaz J, Carroll P, Griffon N (2002) Brain-derived neurotrophic factor controls dopamine D3 receptor expression: implications for neurodevelopmental psychiatric disorders. Neurotox Res 4(7–8):671–678. doi:10.1080/1029842021000045499

    Article  PubMed  CAS  Google Scholar 

  38. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347(6289):146–151. doi:10.1038/347146a0

    Article  PubMed  CAS  Google Scholar 

  39. Corrigan MH, Denahan AQ, Wright CE, Ragual RJ, Evans DL (2000) Comparison of pramipexole, fluoxetine, and placebo in patients with major depression. Depress Anxiety 11(2):58–65. doi:10.1002/(SICI)1520-6394(2000)11:2<58::AID-DA2>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  40. Zarate CA Jr, Payne JL, Singh J, Quiroz JA, Luckenbaugh DA, Denicoff KD, Charney DS, Manji HK (2004) Pramipexole for bipolar II depression: a placebo-controlled proof of concept study. Biol Psychiatry 56(1):54–60. doi:10.1016/j.biopsych.2004.03.013

    Article  PubMed  CAS  Google Scholar 

  41. Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29(4–5):627–647. doi:10.1016/j.neubiorev.2005.03.010

    Article  PubMed  Google Scholar 

  42. Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6(11):1224–1229. doi:10.1038/nn1142

    Article  PubMed  CAS  Google Scholar 

  43. Soh Z, Saito M, Kurita Y, Takiguchi N, Ohtake H, Tsuji T (2014) A comparison between the human sense of smell and neural activity in the olfactory bulb of rats. Chem Senses 39(2):91–105. doi:10.1093/chemse/bjt057

    Article  PubMed  Google Scholar 

  44. Ebrahim IO, Peacock KW (2005) REM sleep behavior disorder–psychiatric presentations: a case series from the United Kingdom. J Clin Sleep Med 1(1):43–47

    PubMed  Google Scholar 

  45. Wirz-Justice A, Van den Hoofdakker RH (1999) Sleep deprivation in depression: what do we know, where do we go? Biol Psychiatry 46(4):445–453

    Article  PubMed  CAS  Google Scholar 

  46. Southmayd SE, David MM, Cairns J, Delva NJ, Letemendia FJ, Waldron JJ (1990) Sleep deprivation in depression: pattern of relapse and characteristics of preceding sleep. Biol Psychiatry 28(11):979–988

    Article  PubMed  CAS  Google Scholar 

  47. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, Picciotto MR (2013) Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A 110(9):3573–3578. doi:10.1073/pnas.1219731110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Gillin JC, Sutton L, Ruiz C, Kelsoe J, Dupont RM, Darko D, Risch SC, Golshan S, Janowsky D (1991) The cholinergic rapid eye movement induction test with arecoline in depression. Arch Gen Psychiatry 48(3):264–270

    Article  PubMed  CAS  Google Scholar 

  49. Basheer R, Magner M, McCarley RW, Shiromani PJ (1998) REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Brain Res Mol Brain Res 57(2):235–240

    Article  PubMed  CAS  Google Scholar 

  50. Shores MM, Szot P, Veith RC (1994) Desipramine-induced increase in norepinephrine transporter mRNA is not mediated via alpha 2 receptors. Brain Res Mol Brain Res 27(2):337–341

    Article  PubMed  CAS  Google Scholar 

  51. Fujihara H, Sei H, Morita Y, Ueta Y, Morita K (2003) Short-term sleep disturbance enhances brain-derived neurotrophic factor gene expression in rat hippocampus by acting as internal stressor. J Mol Neurosci 21(3):223–232

    Article  PubMed  CAS  Google Scholar 

  52. Duncan WC, Sarasso S, Ferrarelli F, Selter J, Riedner BA, Hejazi NS, Yuan P, Brutsche N, Manji HK, Tononi G, Zarate CA (2013) Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 16(2):301–311. doi:10.1017/S1461145712000545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Schrag A (2004) Psychiatric aspects of Parkinson’s disease—an update. J Neurol 251(7):795–804

    Article  PubMed  Google Scholar 

  54. Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48(1):34–42

    Article  PubMed  CAS  Google Scholar 

  55. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88

    Article  PubMed  CAS  Google Scholar 

  56. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by CAPES and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brasil Grants Casadinho/Procad no. 552226/2011-4 and Universal no. 473861/2012-7 to MMSL. MMSL, SMZ, and CDC are recipients of CNPq fellowship. The authors wish to express their sincere gratitude to Prof. Dr. Roberto Andreatini from Pharmacology Department of UFPR for the technical assistance.

Conflict of Interest

The authors have declared that no conflict of interests exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. S. Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maturana, M.J., Pudell, C., Targa, A.D.S. et al. REM Sleep Deprivation Reverses Neurochemical and Other Depressive-Like Alterations Induced by Olfactory Bulbectomy. Mol Neurobiol 51, 349–360 (2015). https://doi.org/10.1007/s12035-014-8721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8721-x

Keywords

Navigation