Skip to main content

Advertisement

Log in

Cognitive Reserve and Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), as a neurodegenerative process caused by widespread senile plaques and neurofibrillary tangles, is faced with an increasingly higher incidence as the global aging develops. Cognitive reserve (CR) hypothesis is proposed to elucidate the disjunction between cognitive performance and the pathological level of AD, positing that some life span experiences will lend protection from AD pathological insults. We provide an overview on recent studies involved in validation of the hypothesis as well as the association between AD and CR proxies, such as educational attainment and quality, occupational activity, leisure activity, general intelligence, and enriched environment. We further discuss some potential mechanisms by which CR proxy acts against AD pathological insults including neuroplasticity, neurogenesis, and locus coeruleus-noradrenergic (LC/NA) system. Finally, we review the applications of CR theory for AD prevention and therapy, particularly through physical activity and cognitive training strategy. We believe that a better knowledge of the relationship between AD and CR, accompanied by a successful transition of research accomplishments into practice, will impart much relief to individuals suffering from AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katzman R, Aronson M, Fuld P, Kawas C, Brown T, Morgenstern H, Frishman W, Gidez L, Eder H, Ooi WL (1989) Development of dementing illnesses in an 80-year-old volunteer cohort. Ann Neurol 25(4):317–324. doi:10.1002/ana.410250402

    CAS  PubMed  Google Scholar 

  2. Riley KP, Snowdon DA, Markesbery WR (2002) Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 51(5):567–577. doi:10.1002/ana.10161

    PubMed  Google Scholar 

  3. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460

    PubMed  Google Scholar 

  4. Cunha PJ, Rosa PGP, Ayres AD, Duran FLS, Santos LC, Scazufca M, Menezes PR, dos Santos B, Murray RM, Crippa JAS, Busatto GF, Schaufelberger MS (2013) Cannabis use, cognition and brain structure in first-episode psychosis. Schizophr Res 147(2–3):209–215. doi:10.1016/j.schres.2013.04.009

    PubMed  Google Scholar 

  5. Schwartz CE, Snook E, Quaranto B, Benedict RH, Vollmer T (2013) Cognitive reserve and patient-reported outcomes in multiple sclerosis. Mult Scler 19(1):87–105. doi:10.1177/1352458512444914

    PubMed  Google Scholar 

  6. Feinstein A, Lapshin H, O’Connor P, Lanctot KL (2013) Sub-threshold cognitive impairment in multiple sclerosis: the association with cognitive reserve. J Neurol 260(9):2256–2261. doi:10.1007/s00415-013-6952-9

    PubMed  Google Scholar 

  7. Levi Y, Rassovsky Y, Agranov E, Sela-Kaufman M, Vakil E (2013) Cognitive reserve components as expressed in traumatic brain injury. J Int Neuropsychol Soc 19(6):664–671. doi:10.1017/S1355617713000192

    PubMed  Google Scholar 

  8. Lee JE, Cho KH, Ham JH, Song SK, Sohn YH, Lee PH (2013) Olfactory performance acts as a cognitive reserve in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord. doi:10.1016/j.parkreldis.2013.10.024

    Google Scholar 

  9. Vance DE, Fazeli PL, Grant JS, Slater LZ, Raper JL (2013) The role of neuroplasticity and cognitive reserve in aging with HIV: recommendations for cognitive protection and rehabilitation. J Neurosci Nurs J Am Assoc Neurosci Nurses 45(5):306–316. doi:10.1097/JNN.0b013e31829d8b29

    Google Scholar 

  10. Kontis D, Huddy V, Reeder C, Landau S, Wykes T (2013) Effects of age and cognitive reserve on cognitive remediation therapy outcome in patients with schizophrenia. Am J Geriatr Psychiatr Off J Am Assoc Geriatr Psychiatr 21(3):218–230. doi:10.1016/j.jagp.2012.12.013

    Google Scholar 

  11. Bonner-Jackson A, Long JD, Westervelt H, Tremont G, Aylward E, Paulsen JS, Investigators P-H, Coordinators of the Huntington Study G (2013) Cognitive reserve and brain reserve in prodromal Huntington’s disease. J Int Neuropsychol Soc 19(7):739–750. doi:10.1017/S1355617713000507

    PubMed Central  PubMed  Google Scholar 

  12. Kesler SR, Tanaka H, Koovakkattu D (2010) Cognitive reserve and brain volumes in pediatric acute lymphoblastic leukemia. Brain Imaging Behav 4(3–4):256–269. doi:10.1007/s11682-010-9104-1

    PubMed Central  PubMed  Google Scholar 

  13. Jankowski CJ, Trenerry MR, Cook DJ, Buenvenida SL, Stevens SR, Schroeder DR, Warner DO (2011) Cognitive and functional predictors and sequelae of postoperative delirium in elderly patients undergoing elective joint arthroplasty. Anesth Analg 112(5):1186–1193. doi:10.1213/ANE.0b013e318211501b

    PubMed  Google Scholar 

  14. Sakamoto M, Woods SP, Kolessar M, Kriz D, Anderson JR, Olavarria H, Sasaki AW, Chang M, Flora KD, Loftis JM, Huckans M (2013) Protective effects of higher cognitive reserve for neuropsychological and daily functioning among individuals infected with hepatitis C. J Neurovirol 19(5):442–451. doi:10.1007/s13365-013-0196-4

    PubMed Central  PubMed  Google Scholar 

  15. Elkins JS, Longstreth WT Jr, Manolio TA, Newman AB, Bhadelia RA, Johnston SC (2006) Education and the cognitive decline associated with MRI-defined brain infarct. Neurology 67(3):435–440. doi:10.1212/01.wnl.0000228246.89109.98

    CAS  PubMed  Google Scholar 

  16. Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43(1):13–20

    CAS  PubMed  Google Scholar 

  17. Barulli D, Stern Y (2013) Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci 17(10):502–509. doi:10.1016/j.tics.2013.08.012

    PubMed  Google Scholar 

  18. Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58(4):376–388

    CAS  PubMed  Google Scholar 

  19. Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(3 Suppl 2):S69–S74

    PubMed  Google Scholar 

  20. Bartres-Faz D, Arenaza-Urquijo EM (2011) Structural and functional imaging correlates of cognitive and brain reserve hypotheses in healthy and pathological aging. Brain Topogr 24(3–4):340–357. doi:10.1007/s10548-011-0195-9

    PubMed  Google Scholar 

  21. Christensen H, Anstey KJ, Parslow RA, Maller J, Mackinnon A, Sachdev P (2007) The brain reserve hypothesis, brain atrophy and aging. Gerontology 53(2):82–95. doi:10.1159/000096482

    PubMed  Google Scholar 

  22. Vuoksimaa E, Panizzon MS, Chen CH, Eyler LT, Fennema-Notestine C, Fiecas MJ, Fischl B, Franz CE, Grant MD, Jak AJ, Lyons MJ, Neale MC, Thompson WK, Tsuang MT, Xian H, Dale AM, Kremen WS (2013) Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia 51(6):1124–1131. doi:10.1016/j.neuropsychologia.2013.02.022

    PubMed Central  PubMed  Google Scholar 

  23. Rentz DM, Locascio JJ, Becker JA, Moran EK, Eng E, Buckner RL, Sperling RA, Johnson KA (2010) Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 67(3):353–364. doi:10.1002/ana.21904

    PubMed Central  PubMed  Google Scholar 

  24. Piras F, Cherubini A, Caltagirone C, Spalletta G (2011) Education mediates microstructural changes in bilateral hippocampus. Hum Brain Mapp 32(2):282–289. doi:10.1002/hbm.21018

    PubMed  Google Scholar 

  25. Teipel SJ, Meindl T, Wagner M, Kohl T, Burger K, Reiser MF, Herpertz S, Moller HJ, Hampel H (2009) White matter microstructure in relation to education in aging and Alzheimer’s disease. J Alzheimers Dis 17(3):571–583. doi:10.3233/JAD-2009-1077

    PubMed  Google Scholar 

  26. Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, Nebes RD, Saxton JA, Snitz BE, Aizenstein HA, Wolk DA, Dekosky ST, Mathis CA, Klunk WE (2009) Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci Off J Soc Neurosci 29(47):14770–14778. doi:10.1523/JNEUROSCI.3669-09.2009

    CAS  Google Scholar 

  27. Liao YC, Liu RS, Teng EL, Lee YC, Wang PN, Lin KN, Chung CP, Liu HC (2005) Cognitive reserve: a SPECT study of 132 Alzheimer’s disease patients with an education range of 0–19 years. Dement Geriatr Cogn Disord 20(1):8–14. doi:10.1159/000085068

    PubMed  Google Scholar 

  28. Rapp SR, Espeland MA, Manson JE, Resnick SM, Bryan NR, Smoller S, Coker LH, Phillips LS, Stefanick ML, Sarto GE, Women’s Health Initiative Memory S (2013) Educational attainment, MRI changes, and cognitive function in older postmenopausal women from the Women’s Health Initiative Memory Study. Int J Psychiatry Med 46(2):121–143

    PubMed  Google Scholar 

  29. Liu Y, Julkunen V, Paajanen T, Westman E, Wahlund LO, Aitken A, Sobow T, Mecocci P, Tsolaki M, Vellas B, Muehlboeck S, Spenger C, Lovestone S, Simmons A, Soininen H, AddNeuroMed C (2012) Education increases reserve against Alzheimer’s disease—evidence from structural MRI analysis. Neuroradiology 54(9):929–938. doi:10.1007/s00234-012-1005-0

    PubMed Central  PubMed  Google Scholar 

  30. Hanyu H, Sato T, Shimizu S, Kanetaka H, Iwamoto T, Koizumi K (2008) The effect of education on rCBF changes in Alzheimer’s disease: a longitudinal SPECT study. Eur J Nucl Med Mol Imaging 35(12):2182–2190. doi:10.1007/s00259-008-0848-4

    PubMed  Google Scholar 

  31. Kemppainen NM, Aalto S, Karrasch M, Nagren K, Savisto N, Oikonen V, Viitanen M, Parkkola R, Rinne JO (2008) Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol 63(1):112–118. doi:10.1002/ana.21212

    PubMed  Google Scholar 

  32. Prince M, Acosta D, Ferri CP, Guerra M, Huang Y, Llibre Rodriguez JJ, Salas A, Sosa AL, Williams JD, Dewey ME, Acosta I, Jotheeswaran AT, Liu Z (2012) Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. Lancet 380(9836):50–58. doi:10.1016/S0140-6736(12)60399-7

    PubMed Central  PubMed  Google Scholar 

  33. Bickel H, Kurz A (2009) Education, occupation, and dementia: the Bavarian school sisters study. Dement Geriatr Cogn Disord 27(6):548–556. doi:10.1159/000227781

    PubMed  Google Scholar 

  34. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE, Hofman A (1995) Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. BMJ 310(6985):970–973

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Crystal HA, Dickson DW, Sliwinski MJ, Lipton RB, Grober E, Marks-Nelson H, Antis P (1993) Pathological markers associated with normal aging and dementia in the elderly. Ann Neurol 34(4):566–573. doi:10.1002/ana.410340410

    CAS  PubMed  Google Scholar 

  36. Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 57(12):1168–1174

    CAS  PubMed  Google Scholar 

  37. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368

    CAS  PubMed  Google Scholar 

  38. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR (2000) “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 55(3):370–376

    CAS  PubMed  Google Scholar 

  39. Morris JC, Price JL (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17(2):101–118

    CAS  PubMed  Google Scholar 

  40. Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen LE, McDonald WC, Braak H, Petersen RC (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62(11):1087–1095

    CAS  PubMed  Google Scholar 

  41. Meng X, D’Arcy C (2012) Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One 7(6):e38268. doi:10.1371/journal.pone.0038268

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Bennett DA, Wilson RS, Schneider JA, Evans DA, Mendes de Leon CF, Arnold SE, Barnes LL, Bienias JL (2003) Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 60(12):1909–1915

    CAS  PubMed  Google Scholar 

  43. Roe CM, Xiong C, Miller JP, Cairns NJ, Morris JC (2008) Interaction of neuritic plaques and education predicts dementia. Alzheimer Dis Assoc Disord 22(2):188–193. doi:10.1097/WAD.0b013e3181610fff

    PubMed Central  PubMed  Google Scholar 

  44. Roe CM, Xiong C, Miller JP, Morris JC (2007) Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 68(3):223–228. doi:10.1212/01.wnl.0000251303.50459.8a

    PubMed  Google Scholar 

  45. Perneczky R, Wagenpfeil S, Lunetta KL, Cupples LA, Green RC, DeCarli C, Farrer LA, Kurz A (2009) Education attenuates the effect of medial temporal lobe atrophy on cognitive function in Alzheimer’s disease: the MIRAGE study. J Alzheimers Dis 17(4):855–862. doi:10.3233/JAD-2009-1117

    PubMed Central  PubMed  Google Scholar 

  46. Mortimer JA, Borenstein AR, Gosche KM, Snowdon DA (2005) Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. J Geriatr Psychiatry Neurol 18(4):218–223. doi:10.1177/0891988705281869

    PubMed Central  PubMed  Google Scholar 

  47. Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE (2005) Education modifies the association of amyloid but not tangles with cognitive function. Neurology 65(6):953–955. doi:10.1212/01.wnl.0000176286.17192.69

    CAS  PubMed  Google Scholar 

  48. Letenneur L, Gilleron V, Commenges D, Helmer C, Orgogozo JM, Dartigues JF (1999) Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry 66(2):177–183

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Roe CM, Mintun MA, D’Angelo G, Xiong C, Grant EA, Morris JC (2008) Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pittsburgh Compound B uptake. Arch Neurol 65(11):1467–1471. doi:10.1001/archneur.65.11.1467

    PubMed Central  PubMed  Google Scholar 

  50. Dartigues JF, Foubert-Samier A, Helmer C (2013) Relationship between educational level and dementia: social factor and age-related chronic disease. Rev Epidemiol Sante Publique 61(Suppl 3):S195–S198. doi:10.1016/j.respe.2013.04.004

    PubMed  Google Scholar 

  51. Sando SB, Melquist S, Cannon A, Hutton M, Sletvold O, Saltvedt I, White LR, Lydersen S, Aasly J (2008) Risk-reducing effect of education in Alzheimer’s disease. Int J Geriatr Psychiatry 23(11):1156–1162. doi:10.1002/gps.2043

    PubMed  Google Scholar 

  52. Sattler C, Toro P, Schonknecht P, Schroder J (2012) Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Res 196(1):90–95. doi:10.1016/j.psychres.2011.11.012

    PubMed  Google Scholar 

  53. Koepsell TD, Kurland BF, Harel O, Johnson EA, Zhou XH, Kukull WA (2008) Education, cognitive function, and severity of neuropathology in Alzheimer disease. Neurology 70(19 Pt 2):1732–1739. doi:10.1212/01.wnl.0000284603.85621.aa

    CAS  PubMed  Google Scholar 

  54. Fyffe DC, Mukherjee S, Barnes LL, Manly JJ, Bennett DA, Crane PK (2011) Explaining differences in episodic memory performance among older African Americans and Whites: the roles of factors related to cognitive reserve and test bias. J Int Neuropsychol Soc 17(4):625–638. doi:10.1017/S1355617711000476

    PubMed Central  PubMed  Google Scholar 

  55. Mehta KM, Stewart AL, Langa KM, Yaffe K, Moody-Ayers S, Williams BA, Covinsky KE (2009) “Below average” self-assessed school performance and Alzheimer’s disease in the Aging, Demographics, and Memory Study. Alzheimers Dement J Alzheimers Association 5(5):380–387. doi:10.1016/j.jalz.2009.07.039

    Google Scholar 

  56. Bialystok E, Craik FI, Binns MA, Ossher L, Freedman M (2014) Effects of bilingualism on the age of onset and progression of MCI and AD: evidence from executive function tests. Neuropsychology 28(2):290–304. doi:10.1037/neu0000023

    PubMed  Google Scholar 

  57. Gold BT, Johnson NF, Powell DK (2013) Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia 51(13):2841–2846. doi:10.1016/j.neuropsychologia.2013.09.037

    PubMed  Google Scholar 

  58. Schweizer TA, Ware J, Fischer CE, Craik FI, Bialystok E (2012) Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer’s disease. Cortex J Devoted Study Nerv Syst Behav 48(8):991–996. doi:10.1016/j.cortex.2011.04.009

    Google Scholar 

  59. Bialystok E (2011) Reshaping the mind: the benefits of bilingualism. Can J Exp Psychol Rev Can Psychol Exp 65(4):229–235. doi:10.1037/a0025406

    Google Scholar 

  60. Gollan TH, Salmon DP, Montoya RI, Galasko DR (2011) Degree of bilingualism predicts age of diagnosis of Alzheimer’s disease in low-education but not in highly educated Hispanics. Neuropsychologia 49(14):3826–3830. doi:10.1016/j.neuropsychologia.2011.09.041

    PubMed Central  PubMed  Google Scholar 

  61. Fischer CE, Schweizer TA (2014) How does speaking another language reduce the risk of dementia? Expert Rev Neurother. doi:10.1586/14737175.2014.892831

    PubMed  Google Scholar 

  62. Conde-Sala JL, Garre-Olmo J, Vilalta-Franch J, Llinas-Regla J, Turro-Garriga O, Lozano-Gallego M, Hernandez-Ferrandiz M, Pericot-Nierga I, Lopez-Pousa S (2013) Cognitive decline in Alzheimer’s disease. A follow three or more years of a sample of patients. Rev Neurol 56(12):593–600

    PubMed  Google Scholar 

  63. Bruandet A, Richard F, Bombois S, Maurage CA, Masse I, Amouyel P, Pasquier F (2008) Cognitive decline and survival in Alzheimer’s disease according to education level. Dement Geriatr Cogn Disord 25(1):74–80. doi:10.1159/000111693

    CAS  PubMed  Google Scholar 

  64. Andel R, Vigen C, Mack WJ, Clark LJ, Gatz M (2006) The effect of education and occupational complexity on rate of cognitive decline in Alzheimer’s patients. J Int Neuropsychol Soc 12(1):147–152. doi:10.1017/S1355617706060206

    PubMed  Google Scholar 

  65. Scarmeas N, Albert SM, Manly JJ, Stern Y (2006) Education and rates of cognitive decline in incident Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77(3):308–316. doi:10.1136/jnnp.2005.072306

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Adamcik J, Lara C, Usov I, Jeong JS, Ruggeri FS, Dietler G, Lashuel HA, Hamley IW, Mezzenga R (2012) Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4(15):4426–4429. doi:10.1039/c2nr30768e

    CAS  PubMed  Google Scholar 

  67. Ye BS, Seo SW, Cho H, Kim SY, Lee JS, Kim EJ, Lee Y, Back JH, Hong CH, Choi SH, Park KW, Ku BD, Moon SY, Kim S, Han SH, Lee JH, Cheong HK, Na DL (2013) Effects of education on the progression of early- versus late-stage mild cognitive impairment. Int Psychogeriatr 25(4):597–606. doi:10.1017/S1041610212002001

    PubMed  Google Scholar 

  68. Morbelli S, Perneczky R, Drzezga A, Frisoni GB, Caroli A, van Berckel BN, Ossenkoppele R, Guedj E, Didic M, Brugnolo A, Naseri M, Sambuceti G, Pagani M, Nobili F (2013) Metabolic networks underlying cognitive reserve in prodromal Alzheimer disease: a European Alzheimer disease consortium project. J Nucl Med Off Publ Soc Nucl Med 54(6):894–902. doi:10.2967/jnumed.112.113928

    CAS  Google Scholar 

  69. Ewers M, Insel PS, Stern Y, Weiner MW, Alzheimer’s Disease Neuroimaging I (2013) Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology 80(13):1194–1201. doi:10.1212/WNL.0b013e31828970c2

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Suh GH, Ju YS, Yeon BK, Shah A (2004) A longitudinal study of Alzheimer’s disease: rates of cognitive and functional decline. Int J Geriatr Psychiatry 19(9):817–824. doi:10.1002/gps.1168

    PubMed  Google Scholar 

  71. Fritsch T, McClendon MJ, Smyth KA, Ogrocki PK (2002) Effects of educational attainment and occupational status on cognitive and functional decline in persons with Alzheimer-type dementia. Int Psychogeriatr 14(4):347–363

    PubMed  Google Scholar 

  72. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Westra HJ, Shakhbazov K, Abdellaoui A, Agrawal A, Albrecht E, Alizadeh BZ, Amin N, Barnard J, Baumeister SE, Benke KS, Bielak LF, Boatman JA, Boyle PA, Davies G, de Leeuw C, Eklund N, Evans DS, Ferhmann R, Fischer K, Gieger C, Gjessing HK, Hagg S, Harris JR, Hayward C, Holzapfel C, Ibrahim-Verbaas CA, Ingelsson E, Jacobsson B, Joshi PK, Jugessur A, Kaakinen M, Kanoni S, Karjalainen J, Kolcic I, Kristiansson K, Kutalik Z, Lahti J, Lee SH, Lin P, Lind PA, Liu Y, Lohman K, Loitfelder M, McMahon G, Vidal PM, Meirelles O, Milani L, Myhre R, Nuotio ML, Oldmeadow CJ, Petrovic KE, Peyrot WJ, Polasek O, Quaye L, Reinmaa E, Rice JP, Rizzi TS, Schmidt H, Schmidt R, Smith AV, Smith JA, Tanaka T, Terracciano A, van der Loos MJ, Vitart V, Volzke H, Wellmann J, Yu L, Zhao W, Allik J, Attia JR, Bandinelli S, Bastardot F, Beauchamp J, Bennett DA, Berger K, Bierut LJ, Boomsma DI, Bultmann U, Campbell H, Chabris CF, Cherkas L, Chung MK, Cucca F, de Andrade M, De Jager PL, De Neve JE, Deary IJ, Dedoussis GV, Deloukas P, Dimitriou M, Eiriksdottir G, Elderson MF, Eriksson JG, Evans DM, Faul JD, Ferrucci L, Garcia ME, Gronberg H, Guethnason V, Hall P, Harris JM, Harris TB, Hastie ND, Heath AC, Hernandez DG, Hoffmann W, Hofman A, Holle R, Holliday EG, Hottenga JJ, Iacono WG, Illig T, Jarvelin MR, Kahonen M, Kaprio J, Kirkpatrick RM, Kowgier M, Latvala A, Launer LJ, Lawlor DA, Lehtimaki T, Li J, Lichtenstein P, Lichtner P, Liewald DC, Madden PA, Magnusson PK, Makinen TE, Masala M, McGue M, Metspalu A, Mielck A, Miller MB, Montgomery GW, Mukherjee S, Nyholt DR, Oostra BA, Palmer LJ, Palotie A, Penninx BW, Perola M, Peyser PA, Preisig M, Raikkonen K, Raitakari OT, Realo A, Ring SM, Ripatti S, Rivadeneira F, Rudan I, Rustichini A, Salomaa V, Sarin AP, Schlessinger D, Scott RJ, Snieder H, St Pourcain B, Starr JM, Sul JH, Surakka I, Svento R, Teumer A, LifeLines Cohort S, Tiemeier H, van Rooij FJ, Van Wagoner DR, Vartiainen E, Viikari J, Vollenweider P, Vonk JM, Waeber G, Weir DR, Wichmann HE, Widen E, Willemsen G, Wilson JF, Wright AF, Conley D, Davey-Smith G, Franke L, Groenen PJ, Hofman A, Johannesson M, Kardia SL, Krueger RF, Laibson D, Martin NG, Meyer MN, Posthuma D, Thurik AR, Timpson NJ, Uitterlinden AG, van Duijn CM, Visscher PM, Benjamin DJ, Cesarini D, Koellinger PD (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340(6139):1467–1471. doi:10.1126/science.1235488

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Garibotto V, Borroni B, Sorbi S, Cappa SF, Padovani A, Perani D (2012) Education and occupation provide reserve in both ApoE epsilon4 carrier and noncarrier patients with probable Alzheimer’s disease. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 33(5):1037–1042. doi:10.1007/s10072-011-0889-5

    CAS  Google Scholar 

  74. Kroger E, Andel R, Lindsay J, Benounissa Z, Verreault R, Laurin D (2008) Is complexity of work associated with risk of dementia? The Canadian Study of Health And Aging. Am J Epidemiol 167(7):820–830. doi:10.1093/aje/kwm382

    PubMed  Google Scholar 

  75. Potter GG, Helms MJ, Burke JR, Steffens DC, Plassman BL (2007) Job demands and dementia risk among male twin pairs. Alzheimers Dement J Alzheimers Association 3(3):192–199. doi:10.1016/j.jalz.2007.04.377

    Google Scholar 

  76. Andel R, Crowe M, Pedersen NL, Mortimer J, Crimmins E, Johansson B, Gatz M (2005) Complexity of work and risk of Alzheimer’s disease: a population-based study of Swedish twins. J Gerontol Ser B Psychol Sci Soc Sci 60(5):P251–P258

    Google Scholar 

  77. Cohen CI (1994) Education, occupation, and Alzheimer’s disease. JAMA J Am Med Assoc 272(18):1405, author reply 1406

    CAS  Google Scholar 

  78. Bonaiuto S, Rocca WA, Lippi A, Giannandrea E, Mele M, Cavarzeran F, Amaducci L (1995) Education and occupation as risk factors for dementia: a population-based case-control study. Neuroepidemiology 14(3):101–109

    CAS  PubMed  Google Scholar 

  79. Smyth KA, Fritsch T, Cook TB, McClendon MJ, Santillan CE, Friedland RP (2004) Worker functions and traits associated with occupations and the development of AD. Neurology 63(3):498–503

    CAS  PubMed  Google Scholar 

  80. Stern Y, Alexander GE, Prohovnik I, Stricks L, Link B, Lennon MC, Mayeux R (1995) Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer’s disease pathology. Neurology 45(1):55–60

    CAS  PubMed  Google Scholar 

  81. Fotenos AF, Mintun MA, Snyder AZ, Morris JC, Buckner RL (2008) Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 65(1):113–120. doi:10.1001/archneurol.2007.27

    PubMed  Google Scholar 

  82. Staff RT, Murray AD, Ahearn TS, Mustafa N, Fox HC, Whalley LJ (2012) Childhood socioeconomic status and adult brain size: childhood socioeconomic status influences adult hippocampal size. Ann Neurol 71(5):653–660. doi:10.1002/ana.22631

    PubMed  Google Scholar 

  83. Kyle J, Fox HC, Whalley LJ (2010) Caffeine, cognition, and socioeconomic status. J Alzheimers Dis 20(Suppl 1):S151–S159. doi:10.3233/JAD-2010-1409

    PubMed  Google Scholar 

  84. Qian W, Schweizer TA, Fischer CE (2014) Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic. Int Psychogeriatr 26(4):597–603. doi:10.1017/S1041610213002299

  85. Yeo RA, Arden R, Jung RE (2011) Alzheimer’s disease and intelligence. Curr Alzheimers Res 8(4):345–353

    CAS  Google Scholar 

  86. Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, Ke X, Le Hellard S, Christoforou A, Luciano M, McGhee K, Lopez L, Gow AJ, Corley J, Redmond P, Fox HC, Haggarty P, Whalley LJ, McNeill G, Goddard ME, Espeseth T, Lundervold AJ, Reinvang I, Pickles A, Steen VM, Ollier W, Porteous DJ, Horan M, Starr JM, Pendleton N, Visscher PM, Deary IJ (2011) Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 16(10):996–1005. doi:10.1038/mp.2011.85

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11(3):201–211. doi:10.1038/nrn2793

    CAS  PubMed  Google Scholar 

  88. Burgaleta M, Johnson W, Waber DP, Colom R, Karama S (2014) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. NeuroImage 84:810–819. doi:10.1016/j.neuroimage.2013.09.038

    PubMed Central  PubMed  Google Scholar 

  89. Pillai JA, McEvoy LK, Hagler DJ Jr, Holland D, Dale AM, Salmon DP, Galasko D, Fennema-Notestine C, Alzheimer’s Disease Neuroimaging I (2012) Higher education is not associated with greater cortical thickness in brain areas related to literacy or intelligence in normal aging or mild cognitive impairment. J Clin Exp Neuropsychol 34(9):925–935. doi:10.1080/13803395.2012.702733

    PubMed Central  PubMed  Google Scholar 

  90. Ritchie SJ, Bates TC, Der G, Starr JM, Deary IJ (2013) Education is associated with higher later life IQ scores, but not with faster cognitive processing speed. Psychol Aging 28(2):515–521. doi:10.1037/a0030820

    PubMed  Google Scholar 

  91. Lo RY, Jagust WJ, Alzheimer’s Disease Neuroimaging I (2013) Effect of cognitive reserve markers on Alzheimer pathologic progression. Alzheimer Dis Assoc Disord 27(4):343–350. doi:10.1097/WAD.0b013e3182900b2b

    CAS  PubMed  Google Scholar 

  92. Oliveira MO, Nitrini R, Brucki SM (2014) The S-TOFHLA as a measure of functional literacy in patients with mild Alzheimer’s disease or mild cognitive impairment. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol. doi:10.1093/arclin/act120

    Google Scholar 

  93. Friedland RP, Fritsch T, Smyth KA, Koss E, Lerner AJ, Chen CH, Petot GJ, Debanne SM (2001) Patients with Alzheimer’s disease have reduced activities in midlife compared with healthy control-group members. Proc Natl Acad Sci U S A 98(6):3440–3445. doi:10.1073/pnas.061002998

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Crowe M, Andel R, Pedersen NL, Johansson B, Gatz M (2003) Does participation in leisure activities lead to reduced risk of Alzheimer’s disease? A prospective study of Swedish twins. J Gerontol Ser B Psychol Sci Soc Sci 58(5):P249–P255

    Google Scholar 

  95. Scarmeas N, Levy G, Tang MX, Manly J, Stern Y (2001) Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology 57(12):2236–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Katzman R (1995) Can late life social or leisure activities delay the onset of dementia? J Am Geriatr Soc 43(5):583–584

    CAS  PubMed  Google Scholar 

  97. Bosma H, van Boxtel MP, Ponds RW, Jelicic M, Houx P, Metsemakers J, Jolles J (2002) Engaged lifestyle and cognitive function in middle and old-aged, non-demented persons: a reciprocal association? Z Gerontol Geriatr 35(6):575–581. doi:10.1007/s00391-002-0080-y

    PubMed  Google Scholar 

  98. Wilson RS, Bennett DA, Bienias JL, Mendes de Leon CF, Morris MC, Evans DA (2003) Cognitive activity and cognitive decline in a biracial community population. Neurology 61(6):812–816

    CAS  PubMed  Google Scholar 

  99. Karp A, Paillard-Borg S, Wang HX, Silverstein M, Winblad B, Fratiglioni L (2006) Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement Geriatr Cogn Disord 21(2):65–73. doi:10.1159/000089919

    PubMed  Google Scholar 

  100. Wilson RS, Boyle PA, Yu L, Barnes LL, Schneider JA, Bennett DA (2013) Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology 81(4):314–321. doi:10.1212/WNL.0b013e31829c5e8a

    PubMed Central  PubMed  Google Scholar 

  101. Hopper T, Drefs SJ, Bayles KA, Tomoeda CK, Dinu I (2010) The effects of modified spaced-retrieval training on learning and retention of face-name associations by individuals with dementia. Neuropsychol Rehabil 20(1):81–102. doi:10.1080/09602010902937590

    PubMed  Google Scholar 

  102. Lee SB, Park CS, Jeong JW, Choe JY, Hwang YJ, Park CA, Park JH, Lee DY, Jhoo JH, Kim KW (2009) Effects of spaced retrieval training (SRT) on cognitive function in Alzheimer’s disease (AD) patients. Arch Gerontol Geriatr 49(2):289–293. doi:10.1016/j.archger.2008.10.005

    PubMed  Google Scholar 

  103. Small JA (2012) A new frontier in spaced retrieval memory training for persons with Alzheimer’s disease. Neuropsychol Rehabil 22(3):329–361. doi:10.1080/09602011.2011.640468

    PubMed  Google Scholar 

  104. Carretti B, Borella E, Fostinelli S, Zavagnin M (2013) Benefits of training working memory in amnestic mild cognitive impairment: specific and transfer effects. Int Psychogeriatr 25(4):617–626. doi:10.1017/S1041610212002177

    PubMed  Google Scholar 

  105. Belleville S, Clement F, Mellah S, Gilbert B, Fontaine F, Gauthier S (2011) Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134(Pt 6):1623–1634. doi:10.1093/brain/awr037

    PubMed  Google Scholar 

  106. Herrera C, Chambon C, Michel BF, Paban V, Alescio-Lautier B (2012) Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia 50(8):1871–1881. doi:10.1016/j.neuropsychologia.2012.04.012

    CAS  PubMed  Google Scholar 

  107. Hwang HR, Choi SH, Yoon DH, Yoon BN, Suh YJ, Lee D, Han IT, Hong CG (2012) The effect of cognitive training in patients with mild cognitive impairment and early Alzheimer’s disease: a preliminary study. J Clin Neurol 8(3):190–197. doi:10.3988/jcn.2012.8.3.190

    PubMed Central  PubMed  Google Scholar 

  108. Lee GY, Yip CC, Yu EC, Man DW (2013) Evaluation of a computer-assisted errorless learning-based memory training program for patients with early Alzheimer’s disease in Hong Kong: a pilot study. Clin Interv Aging 8:623–633. doi:10.2147/CIA.S45726

    PubMed Central  PubMed  Google Scholar 

  109. Yu F, Rose KM, Burgener SC, Cunningham C, Buettner LL, Beattie E, Bossen AL, Buckwalter KC, Fick DM, Fitzsimmons S, Kolanowski A, Janet K, Specht P, Richeson NE, Testad I, McKenzie SE (2009) Cognitive training for early-stage Alzheimer’s disease and dementia. J Gerontol Nurs 35(3):23–29

    PubMed  Google Scholar 

  110. Spironelli C, Bergamaschi S, Mondini S, Villani D, Angrilli A (2013) Functional plasticity in Alzheimer’s disease: effect of cognitive training on language-related ERP components. Neuropsychologia 51(8):1638–1648. doi:10.1016/j.neuropsychologia.2013.05.007

    PubMed  Google Scholar 

  111. Yoshida D, Shimada H, Makizako H, Doi T, Ito K, Kato T, Shimokata H, Washimi Y, Endo H, Suzuki T (2012) The relationship between atrophy of the medial temporal area and daily activities in older adults with mild cognitive impairment. Aging Clin Exp Res 24(5):423–429. doi:10.3275/8297

    PubMed  Google Scholar 

  112. Gaitan A, Garolera M, Cerulla N, Chico G, Rodriguez-Querol M, Canela-Soler J (2013) Efficacy of an adjunctive computer-based cognitive training program in amnestic mild cognitive impairment and Alzheimer’s disease: a single-blind, randomized clinical trial. Int J Geriatr Psychiatry 28(1):91–99. doi:10.1002/gps.3794

    PubMed  Google Scholar 

  113. Hampstead BM, Sathian K, Moore AB, Nalisnick C, Stringer AY (2008) Explicit memory training leads to improved memory for face-name pairs in patients with mild cognitive impairment: results of a pilot investigation. J Int Neuropsychol Soc 14(5):883–889. doi:10.1017/S1355617708081009

    PubMed  Google Scholar 

  114. Boller B, Jennings JM, Dieudonne B, Verny M, Ergis AM (2012) Recollection training and transfer effects in Alzheimer’s disease: effectiveness of the repetition-lag procedure. Brain Cogn 78(2):169–177. doi:10.1016/j.bandc.2011.10.011

    PubMed  Google Scholar 

  115. Fratiglioni L, Wang HX, Ericsson K, Maytan M, Winblad B (2000) Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet 355(9212):1315–1319. doi:10.1016/S0140-6736(00)02113-9

    CAS  PubMed  Google Scholar 

  116. Wang HX, Karp A, Winblad B, Fratiglioni L (2002) Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. Am J Epidemiol 155(12):1081–1087

    PubMed  Google Scholar 

  117. Holtzman RE, Rebok GW, Saczynski JS, Kouzis AC, Wilcox Doyle K, Eaton WW (2004) Social network characteristics and cognition in middle-aged and older adults. J Gerontol Ser B Psychol Sci Soc Sci 59(6):P278–P284

    Google Scholar 

  118. Barnes DE, Cauley JA, Lui LY, Fink HA, McCulloch C, Stone KL, Yaffe K (2007) Women who maintain optimal cognitive function into old age. J Am Geriatr Soc 55(2):259–264. doi:10.1111/j.1532-5415.2007.01040.x

    PubMed  Google Scholar 

  119. Bennett DA, Schneider JA, Tang Y, Arnold SE, Wilson RS (2006) The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5(5):406–412. doi:10.1016/S1474-4422(06)70417-3

    PubMed  Google Scholar 

  120. Amieva H, Stoykova R, Matharan F, Helmer C, Antonucci TC, Dartigues JF (2010) What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. Psychosom Med 72(9):905–911. doi:10.1097/PSY.0b013e3181f5e121

    PubMed  Google Scholar 

  121. Clarke PJ, Ailshire JA, House JS, Morenoff JD, King K, Melendez R, Langa KM (2012) Cognitive function in the community setting: the neighbourhood as a source of ‘cognitive reserve’? J Epidemiol Community Health 66(8):730–736. doi:10.1136/jech.2010.128116

    PubMed Central  PubMed  Google Scholar 

  122. Hakansson K, Rovio S, Helkala EL, Vilska AR, Winblad B, Soininen H, Nissinen A, Mohammed AH, Kivipelto M (2009) Association between mid-life marital status and cognitive function in later life: population based cohort study. BMJ 339:b2462. doi:10.1136/bmj.b2462

    PubMed Central  PubMed  Google Scholar 

  123. O’Luanaigh C, O’Connell H, Chin AV, Hamilton F, Coen R, Walsh C, Walsh JB, Caokley D, Cunningham C, Lawlor BA (2012) Loneliness and cognition in older people: the Dublin Healthy Ageing study. Aging Ment Health 16(3):347–352. doi:10.1080/13607863.2011.628977

    PubMed  Google Scholar 

  124. Huang HJ, Liang KC, Ke HC, Chang YY, Hsieh-Li HM (2011) Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res 1371:150–160. doi:10.1016/j.brainres.2010.11.043

    CAS  PubMed  Google Scholar 

  125. Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK (2009) Limited impact of social isolation on Alzheimer-like symptoms in a triple transgenic mouse model. Behav Neurosci 123(1):181–195. doi:10.1037/a0013607

    PubMed  Google Scholar 

  126. Wilson RS, Krueger KR, Arnold SE, Schneider JA, Kelly JF, Barnes LL, Tang Y, Bennett DA (2007) Loneliness and risk of Alzheimer disease. Arch Gen Psychiatry 64(2):234–240. doi:10.1001/archpsyc.64.2.234

    PubMed  Google Scholar 

  127. Holwerda TJ, Deeg DJ, Beekman AT, van Tilburg TG, Stek ML, Jonker C, Schoevers RA (2014) Feelings of loneliness, but not social isolation, predict dementia onset: results from the Amsterdam Study of the Elderly (AMSTEL). J Neurol Neurosurg Psychiatry 85(2):135–142. doi:10.1136/jnnp-2012-302755

    PubMed  Google Scholar 

  128. Bowen ME (2012) A prospective examination of the relationship between physical activity and dementia risk in later life. Am J Health Promot 26(6):333–340. doi:10.4278/ajhp.110311-QUAN-115

    PubMed  Google Scholar 

  129. Hamer M, Chida Y (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med 39(1):3–11. doi:10.1017/S0033291708003681

    CAS  PubMed  Google Scholar 

  130. Malthouse R, Fox F (2013) Exploring experiences of physical activity among people with Alzheimer’s disease and their spouse carers: a qualitative study. Physiotherapy. doi:10.1016/j.physio.2013.10.002

    PubMed  Google Scholar 

  131. Podewils LJ, Guallar E, Kuller LH, Fried LP, Lopez OL, Carlson M, Lyketsos CG (2005) Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cognition Study. Am J Epidemiol 161(7):639–651. doi:10.1093/aje/kwi092

    PubMed  Google Scholar 

  132. Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4(11):705–711. doi:10.1016/S1474-4422(05)70198-8

    PubMed  Google Scholar 

  133. Luck T, Riedel-Heller SG, Luppa M, Wiese B, Kohler M, Jessen F, Bickel H, Weyerer S, Pentzek M, Konig HH, Prokein J, Ernst A, Wagner M, Mosch E, Werle J, Fuchs A, Brettschneider C, Scherer M, Maier W (2013) Apolipoprotein E epsilon 4 genotype and a physically active lifestyle in late life: analysis of gene-environment interaction for the risk of dementia and Alzheimer’s disease dementia. Psychol Med. doi:10.1017/S0033291713001918

  134. Rovio S, Kareholt I, Viitanen M, Winblad B, Tuomilehto J, Soininen H, Nissinen A, Kivipelto M (2007) Work-related physical activity and the risk of dementia and Alzheimer’s disease. Int J Geriatr Psychiatry 22(9):874–882. doi:10.1002/gps.1755

    PubMed  Google Scholar 

  135. Benedict C, Brooks SJ, Kullberg J, Nordenskjold R, Burgos J, Le Greves M, Kilander L, Larsson EM, Johansson L, Ahlstrom H, Lind L, Schioth HB (2013) Association between physical activity and brain health in older adults. Neurobiol Aging 34(1):83–90. doi:10.1016/j.neurobiolaging.2012.04.013

    PubMed  Google Scholar 

  136. Brown BM, Peiffer JJ, Sohrabi HR, Mondal A, Gupta VB, Rainey-Smith SR, Taddei K, Burnham S, Ellis KA, Szoeke C, Masters CL, Ames D, Rowe CC, Martins RN, group Ar (2012) Intense physical activity is associated with cognitive performance in the elderly. Transl Psychiatry 2:e191. doi:10.1038/tp.2012.118

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Intlekofer KA, Cotman CW (2013) Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis 57:47–55. doi:10.1016/j.nbd.2012.06.011

    CAS  PubMed  Google Scholar 

  138. Sattler C, Erickson KI, Toro P, Schroder J (2011) Physical fitness as a protective factor for cognitive impairment in a prospective population-based study in Germany. J Alzheimers Dis 26(4):709–718. doi:10.3233/JAD-2011-110548

    PubMed  Google Scholar 

  139. de Andrade LP, Gobbi LT, Coelho FG, Christofoletti G, Costa JL, Stella F (2013) Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer’s disease: a controlled trial. J Am Geriatr Soc 61(11):1919–1926. doi:10.1111/jgs.12531

    PubMed  Google Scholar 

  140. Hernandez SS, Coelho FG, Gobbi S, Stella F (2010) Effects of physical activity on cognitive functions, balance and risk of falls in elderly patients with Alzheimer’s dementia. Rev Bras Fisioterapia 14(1):68–74

    Google Scholar 

  141. Kirk-Sanchez NJ, McGough EL (2014) Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging 9:51–62. doi:10.2147/CIA.S39506

    PubMed Central  PubMed  Google Scholar 

  142. Winchester J, Dick MB, Gillen D, Reed B, Miller B, Tinklenberg J, Mungas D, Chui H, Galasko D, Hewett L, Cotman CW (2013) Walking stabilizes cognitive functioning in Alzheimer’s disease (AD) across one year. Arch Gerontol Geriatr 56(1):96–103. doi:10.1016/j.archger.2012.06.016

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H (2012) Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol 12:128. doi:10.1186/1471-2377-12-128

    PubMed Central  PubMed  Google Scholar 

  144. McGough EL, Cochrane BB, Pike KC, Logsdon RG, McCurry SM, Teri L (2013) Dimensions of physical frailty and cognitive function in older adults with amnestic mild cognitive impairment. Ann Phys Rehabil Med 56(5):329–341. doi:10.1016/j.rehab.2013.02.005

    CAS  PubMed  Google Scholar 

  145. Cyarto EV, Cox KL, Almeida OP, Flicker L, Ames D, Byrne G, Hill KD, Beer CD, LoGiudice D, Appadurai K, Irish M, Renehan E, Lautenschlager NT (2010) The fitness for the Ageing Brain Study II (FABS II): protocol for a randomized controlled clinical trial evaluating the effect of physical activity on cognitive function in patients with Alzheimer’s disease. Trials 11:120. doi:10.1186/1745-6215-11-120

    PubMed Central  PubMed  Google Scholar 

  146. Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristofol R, Delgado-Garcia JM, Sanfeliu C (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24(3):421–454. doi:10.3233/JAD-2011-101635

    PubMed  Google Scholar 

  147. Baker LD, Bayer-Carter JL, Skinner J, Montine TJ, Cholerton BA, Callaghan M, Leverenz JB, Walter BK, Tsai E, Postupna N, Lampe J, Craft S (2012) High-intensity physical activity modulates diet effects on cerebrospinal amyloid-beta levels in normal aging and mild cognitive impairment. J Alzheimers Dis 28(1):137–146. doi:10.3233/JAD-2011-111076

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Solfrizzi V, Frisardi V, Capurso C, D’Introno A, Colacicco AM, Vendemiale G, Capurso A, Panza F (2010) Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms. Ageing Res Rev 9(2):184–199. doi:10.1016/j.arr.2009.07.005

    CAS  PubMed  Google Scholar 

  149. Lee S, Doulames V, Donnelly M, Levasseaur J, Shea TB (2012) Environmental enrichment can prevent cognitive decline induced by dietary oxidative challenge. J Alzheimers Dis 28(3):497–501. doi:10.3233/JAD-2011-111562

    CAS  PubMed  Google Scholar 

  150. Costa DA, Cracchiolo JR, Bachstetter AD, Hughes TF, Bales KR, Paul SM, Mervis RF, Arendash GW, Potter H (2007) Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging 28(6):831–844. doi:10.1016/j.neurobiolaging.2006.04.009

    CAS  PubMed  Google Scholar 

  151. Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR, Savonenko AV (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 25(21):5217–5224. doi:10.1523/JNEUROSCI.5080-04.2005

    CAS  Google Scholar 

  152. Montarolo F, Parolisi R, Hoxha E, Boda E, Tempia F (2013) Early enriched environment exposure protects spatial memory and accelerates amyloid plaque formation in APP(Swe)/PS1(L166P) mice. PLoS One 8(7):e69381. doi:10.1371/journal.pone.0069381

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Arendash GW, Garcia MF, Costa DA, Cracchiolo JR, Wefes IM, Potter H (2004) Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport 15(11):1751–1754

    PubMed  Google Scholar 

  154. Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Asada M, Watanabe K, Hayashida N, Ihara M, Ito H, Shimohama S, Kihara T, Kinoshita A (2012) Environmental enrichment ameliorated high-fat diet-induced Abeta deposition and memory deficit in APP transgenic mice. Neurobiol Aging 33(5):1011.e11–1011.e23. doi:10.1016/j.neurobiolaging.2011.10.028

  155. Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L (2007) Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis 11(3):359–370

    CAS  PubMed  Google Scholar 

  156. Yao ZH, Zhang JJ, Xie XF (2012) Enriched environment prevents cognitive impairment and tau hyperphosphorylation after chronic cerebral hypoperfusion. Curr Neurovasc Res 9(3):176–184

    CAS  PubMed  Google Scholar 

  157. Lazarov O, Robinson J, Tang YP, Hairston IS, Korade-Mirnics Z, Lee VM, Hersh LB, Sapolsky RM, Mirnics K, Sisodia SS (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120(5):701–713. doi:10.1016/j.cell.2005.01.015

    CAS  PubMed  Google Scholar 

  158. Ambree O, Leimer U, Herring A, Gortz N, Sachser N, Heneka MT, Paulus W, Keyvani K (2006) Reduction of amyloid angiopathy and Abeta plaque burden after enriched housing in TgCRND8 mice: involvement of multiple pathways. Am J Pathol 169(2):544–552

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Beauquis J, Pavia P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239:28–37. doi:10.1016/j.expneurol.2012.09.009

    CAS  PubMed  Google Scholar 

  160. Rodriguez JJ, Terzieva S, Olabarria M, Lanza RG, Verkhratsky A (2013) Enriched environment and physical activity reverse astrogliodegeneration in the hippocampus of AD transgenic mice. Cell Death Dis 4:e678. doi:10.1038/cddis.2013.194

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Barak B, Shvarts-Serebro I, Modai S, Gilam A, Okun E, Michaelson DM, Mattson MP, Shomron N, Ashery U (2013) Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models. Transl Psychiatry 3:e304. doi:10.1038/tp.2013.77

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Arranz L, De Castro NM, Baeza I, Gimenez-Llort L, De la Fuente M (2011) Effect of environmental enrichment on the immunoendocrine aging of male and female triple-transgenic 3xTg-AD mice for Alzheimer’s disease. J Alzheimers Dis 25(4):727–737. doi:10.3233/JAD-2011-110236

    CAS  PubMed  Google Scholar 

  163. Jankowsky JL, Xu G, Fromholt D, Gonzales V, Borchelt DR (2003) Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Neuropathol Exp Neurol 62(12):1220–1227

    CAS  PubMed  Google Scholar 

  164. Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O (2012) Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol Aging 33(1):96–107. doi:10.1016/j.neurobiolaging.2010.02.012

    PubMed  Google Scholar 

  165. Verret L, Krezymon A, Halley H, Trouche S, Zerwas M, Lazouret M, Lassalle JM, Rampon C (2013) Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 34(1):211–225. doi:10.1016/j.neurobiolaging.2012.05.013

    CAS  PubMed  Google Scholar 

  166. Pascual-Leone A, Freitas C, Oberman L, Horvath JC, Halko M, Eldaief M, Bashir S, Vernet M, Shafi M, Westover B, Vahabzadeh-Hagh AM, Rotenberg A (2011) Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 24(3–4):302–315. doi:10.1007/s10548-011-0196-8

    PubMed Central  PubMed  Google Scholar 

  167. Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E, Nixon RA (2007) Cortical plasticity in Alzheimer’s disease in humans and rodents. Biol Psychiatry 62(12):1405–1412. doi:10.1016/j.biopsych.2007.02.027

    CAS  PubMed  Google Scholar 

  168. Terranova C, SantAngelo A, Morgante F, Rizzo V, Allegra R, Arena MG, Ricciardi L, Ghilardi MF, Girlanda P, Quartarone A (2013) Impairment of sensory-motor plasticity in mild Alzheimer’s disease. Brain Stimul 6(1):62–66. doi:10.1016/j.brs.2012.01.010

    PubMed  Google Scholar 

  169. Liu L, Orozco IJ, Planel E, Wen Y, Bretteville A, Krishnamurthy P, Wang L, Herman M, Figueroa H, Yu WH, Arancio O, Duff K (2008) A transgenic rat that develops Alzheimer’s disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment. Neurobiol Dis 31(1):46–57. doi:10.1016/j.nbd.2008.03.005

    CAS  PubMed  Google Scholar 

  170. Crouzin N, Baranger K, Cavalier M, Marchalant Y, Cohen-Solal C, Roman FS, Khrestchatisky M, Rivera S, Feron F, Vignes M (2013) Area-specific alterations of synaptic plasticity in the 5XFAD mouse model of Alzheimer’s disease: dissociation between somatosensory cortex and hippocampus. PLoS One 8(9):e74667. doi:10.1371/journal.pone.0074667

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1):1–32

    CAS  PubMed  Google Scholar 

  172. Chen X, Lin R, Chang L, Xu S, Wei X, Zhang J, Wang C, Anwyl R, Wang Q (2013) Enhancement of long-term depression by soluble amyloid beta protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience 253:435–443. doi:10.1016/j.neuroscience.2013.08.054

    CAS  PubMed  Google Scholar 

  173. Alvarez-Salvado E, Pallares V, Moreno A, Canals S (2014) Functional MRI of long-term potentiation: imaging network plasticity. Philos Trans R Soc Lond Ser B Biol Sci 369(1633):20130152. doi:10.1098/rstb.2013.0152

    Google Scholar 

  174. Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83(3):131–139. doi:10.1016/j.pneurobio.2007.08.002

    CAS  PubMed  Google Scholar 

  175. Wei W, Nguyen LN, Kessels HW, Hagiwara H, Sisodia S, Malinow R (2010) Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci 13(2):190–196. doi:10.1038/nn.2476

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Hu NW, Smith IM, Walsh DM, Rowan MJ (2008) Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 131(Pt 9):2414–2424. doi:10.1093/brain/awn174

    PubMed  Google Scholar 

  177. Holscher C, Gengler S, Gault VA, Harriott P, Mallot HA (2007) Soluble beta-amyloid[25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning. Eur J Pharmacol 561(1–3):85–90. doi:10.1016/j.ejphar.2007.01.040

    CAS  PubMed  Google Scholar 

  178. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi:10.1038/nm1782

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. doi:10.1016/j.bbr.2008.02.016

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572(Pt 2):477–492. doi:10.1113/jphysiol.2005.103754

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Koch G, Esposito Z, Kusayanagi H, Monteleone F, Codeca C, Di Lorenzo F, Caltagirone C, Bernardi G, Martorana A (2011) CSF tau levels influence cortical plasticity in Alzheimer’s disease patients. J Alzheimers Dis 26(1):181–186. doi:10.3233/JAD-2011-110116

    CAS  PubMed  Google Scholar 

  182. Lo AC, Iscru E, Blum D, Tesseur I, Callaerts-Vegh Z, Buee L, De Strooper B, Balschun D, D’Hooge R (2013) Amyloid and tau neuropathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer’s disease. J Alzheimers Dis 37(1):109–125. doi:10.3233/JAD-122296

    CAS  PubMed  Google Scholar 

  183. Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol 55:429–437

    CAS  PubMed  Google Scholar 

  184. Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, Kempermann G (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60(12):1314–1323. doi:10.1016/j.biopsych.2006.04.004

    CAS  PubMed  Google Scholar 

  185. Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O (2010) Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB J Off Publ Fed Am Soc Exp Biol 24(6):1667–1681. doi:10.1096/fj.09-136945

    CAS  Google Scholar 

  186. Middei S, Roberto A, Berretta N, Panico MB, Lista S, Bernardi G, Mercuri NB, Ammassari-Teule M, Nistico R (2010) Learning discloses abnormal structural and functional plasticity at hippocampal synapses in the APP23 mouse model of Alzheimer’s disease. Learn Mem 17(5):236–240. doi:10.1101/lm.1748310

    CAS  PubMed  Google Scholar 

  187. Tomycz ND, Friedlander RM (2011) Memory training unlocks brain plasticity in prodromal Alzheimer’s disease. Neurosurgery 69(2):N13–N14. doi:10.1227/01.neu.0000400013.85906.95

    PubMed  Google Scholar 

  188. Bezzola L, Merillat S, Gaser C, Jancke L (2011) Training-induced neural plasticity in golf novices. J Neurosci Off J Soc Neurosci 31(35):12444–12448. doi:10.1523/JNEUROSCI.1996-11.2011

    CAS  Google Scholar 

  189. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108(7):3017–3022. doi:10.1073/pnas.1015950108

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, Vanpatter M, Pontifex MB, Raine LB, Konkel A, Hillman CH, Cohen NJ, Kramer AF (2010) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358:172–183. doi:10.1016/j.brainres.2010.08.049

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Voss MW, Prakash RS, Erickson KI, Basak C, Chaddock L, Kim JS, Alves H, Heo S, Szabo AN, White SM, Wojcicki TR, Mailey EL, Gothe N, Olson EA, McAuley E, Kramer AF (2010) Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2. pii: 32. doi:10.3389/fnagi.2010.00032

  192. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    CAS  PubMed  Google Scholar 

  193. Eckert MJ, Abraham WC (2013) Effects of environmental enrichment exposure on synaptic transmission and plasticity in the hippocampus. Curr Top Behav Neurosci 15:165–187. doi:10.1007/7854_2012_215

    PubMed  Google Scholar 

  194. Little DM, Foxely S, Lazarov O (2012) A preliminary study targeting neuronal pathways activated following environmental enrichment by resting state functional magnetic resonance imaging. J Alzheimers Dis 32(1):101–107. doi:10.3233/JAD-2012-111508

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Arenaza-Urquijo EM, Landeau B, La Joie R, Mevel K, Mezenge F, Perrotin A, Desgranges B, Bartres-Faz D, Eustache F, Chetelat G (2013) Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage 83:450–457. doi:10.1016/j.neuroimage.2013.06.053

    PubMed  Google Scholar 

  196. Park DC, Bischof GN (2013) The aging mind: neuroplasticity in response to cognitive training. Dialogues Clin Neurosci 15(1):109–119

    PubMed Central  PubMed  Google Scholar 

  197. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97(8):4398–4403. doi:10.1073/pnas.070039597

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Noack H, Lovden M, Schmiedek F, Lindenberger U (2009) Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor Neurol Neurosci 27(5):435–453. doi:10.3233/RNN-2009-0496

    PubMed  Google Scholar 

  199. Lovden M, Brehmer Y, Li SC, Lindenberger U (2012) Training-induced compensation versus magnification of individual differences in memory performance. Front Hum Neurosci 6:141. doi:10.3389/fnhum.2012.00141

    PubMed Central  PubMed  Google Scholar 

  200. Hotting K, Roder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9 Pt B):2243–2257. doi:10.1016/j.neubiorev.2013.04.005

    PubMed  Google Scholar 

  201. Erickson KI, Gildengers AG, Butters MA (2013) Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci 15(1):99–108

    PubMed Central  PubMed  Google Scholar 

  202. Erickson KI, Weinstein AM, Lopez OL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43(8):615–621. doi:10.1016/j.arcmed.2012.09.008

    PubMed Central  PubMed  Google Scholar 

  203. Foster PP, Rosenblatt KP, Kuljis RO (2011) Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer’s disease. Front Neurol 2:28. doi:10.3389/fneur.2011.00028

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. doi:10.1016/j.tics.2013.08.001

    PubMed  Google Scholar 

  205. Pareja-Galeano H, Brioche T, Sanchis-Gomar F, Montal A, Jovani C, Martinez-Costa C, Gomez-Cabrera MC, Vina J (2013) Impact of exercise training on neuroplasticity-related growth factors in adolescents. J Musculoskelet Nueronal Interact 13(3):368–371

    CAS  Google Scholar 

  206. Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci Off J Soc Neurosci 21(15):5678–5684

    CAS  Google Scholar 

  207. Koehl M, Meerlo P, Gonzales D, Rontal A, Turek FW, Abrous DN (2008) Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin. FASEB J Off Publ Fed Am Soc Exp Biol 22(7):2253–2262. doi:10.1096/fj.07-099101

    CAS  Google Scholar 

  208. Hulmi JJ, Walker S, Ahtiainen JP, Nyman K, Kraemer WJ, Hakkinen K (2012) Molecular signaling in muscle is affected by the specificity of resistance exercise protocol. Scand J Med Sci Sports 22(2):240–248. doi:10.1111/j.1600-0838.2010.01198.x

    CAS  PubMed  Google Scholar 

  209. Brown BM, Peiffer JJ, Taddei K, Lui JK, Laws SM, Gupta VB, Taddei T, Ward VK, Rodrigues MA, Burnham S, Rainey-Smith SR, Villemagne VL, Bush A, Ellis KA, Masters CL, Ames D, Macaulay SL, Szoeke C, Rowe CC, Martins RN (2013) Physical activity and amyloid-beta plasma and brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Mol Psychiatry 18(8):875–881. doi:10.1038/mp.2012.107

    CAS  PubMed  Google Scholar 

  210. Stranahan AM, Martin B, Maudsley S (2012) Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer’s disease. Curr Alzheimers Res 9(1):86–92

    Google Scholar 

  211. Herring A, Donath A, Yarmolenko M, Uslar E, Conzen C, Kanakis D, Bosma C, Worm K, Paulus W, Keyvani K (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J Off Publ Fed Am Soc Exp Biol 26(1):117–128. doi:10.1096/fj.11-193193

    CAS  Google Scholar 

  212. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135(3509):1127–1128

    CAS  PubMed  Google Scholar 

  213. Lazarov O, Marr RA (2013) Of mice and men: neurogenesis, cognition and Alzheimer’s disease. Front Aging Neurosci 5:43. doi:10.3389/fnagi.2013.00043

    PubMed Central  PubMed  Google Scholar 

  214. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. doi:10.1186/1750-1326-6-85

    PubMed Central  PubMed  Google Scholar 

  215. Crews L, Rockenstein E, Masliah E (2010) APP transgenic modeling of Alzheimer’s disease: mechanisms of neurodegeneration and aberrant neurogenesis. Brain Struct Funct 214(2–3):111–126. doi:10.1007/s00429-009-0232-6

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Hamilton LK, Aumont A, Julien C, Vadnais A, Calon F, Fernandes KJ (2010) Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer’s disease. Eur J Neurosci 32(6):905–920. doi:10.1111/j.1460-9568.2010.07379.x

    PubMed  Google Scholar 

  217. Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88(10):2103–2117. doi:10.1002/jnr.22387

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Pristera A, Saraulli D, Farioli-Vecchioli S, Strimpakos G, Costanzi M, di Certo MG, Cannas S, Ciotti MT, Tirone F, Mattei E, Cestari V, Canu N (2013) Impact of N-tau on adult hippocampal neurogenesis, anxiety, and memory. Neurobiol Aging 34(11):2551–2563. doi:10.1016/j.neurobiolaging.2013.05.010

    CAS  PubMed  Google Scholar 

  219. Zheng M, Liu J, Ruan Z, Tian S, Ma Y, Zhu J, Li G (2013) Intrahippocampal injection of Abeta1-42 inhibits neurogenesis and down-regulates IFN-gamma and NF-kappaB expression in hippocampus of adult mouse brain. Int J Experiment Clin Investig Off J Int Soc Amyloidosis 20(1):13–20. doi:10.3109/13506129.2012.755122

    Google Scholar 

  220. Ghosal K, Stathopoulos A, Pimplikar SW (2010) APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One 5(7):e11866. doi:10.1371/journal.pone.0011866

    PubMed Central  PubMed  Google Scholar 

  221. Naumann N, Alpar A, Ueberham U, Arendt T, Gartner U (2010) Transgenic expression of human wild-type amyloid precursor protein decreases neurogenesis in the adult hippocampus. Hippocampus 20(8):971–979. doi:10.1002/hipo.20693

    CAS  PubMed  Google Scholar 

  222. Zhou ZD, Chan CH, Ma QH, Xu XH, Xiao ZC, Tan EK (2011) The roles of amyloid precursor protein (APP) in neurogenesis: implications to pathogenesis and therapy of Alzheimer disease. Cell Adhes Migr 5(4):280–292

    Google Scholar 

  223. Krezymon A, Richetin K, Halley H, Roybon L, Lassalle JM, Frances B, Verret L, Rampon C (2013) Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer’s disease. PLoS One 8(9):e76497. doi:10.1371/journal.pone.0076497

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Faure A, Verret L, Bozon B, El Tannir El Tayara N, Ly M, Kober F, Dhenain M, Rampon C, Delatour B (2011) Impaired neurogenesis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol Aging 32(3):407–418. doi:10.1016/j.neurobiolaging.2009.03.009

    CAS  PubMed  Google Scholar 

  225. Tanti A, Rainer Q, Minier F, Surget A, Belzung C (2012) Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology 63(3):374–384. doi:10.1016/j.neuropharm.2012.04.022

    CAS  PubMed  Google Scholar 

  226. Herring A, Ambree O, Tomm M, Habermann H, Sachser N, Paulus W, Keyvani K (2009) Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol 216(1):184–192. doi:10.1016/j.expneurol.2008.11.027

    CAS  PubMed  Google Scholar 

  227. Llorens-Martin M, Tejeda GS, Trejo JL (2010) Differential regulation of the variations induced by environmental richness in adult neurogenesis as a function of time: a dual birthdating analysis. PLoS One 5(8):e12188. doi:10.1371/journal.pone.0012188

    PubMed Central  PubMed  Google Scholar 

  228. Catlow BJ, Rowe AR, Clearwater CR, Mamcarz M, Arendash GW, Sanchez-Ramos J (2009) Effects of environmental enrichment and physical activity on neurogenesis in transgenic PS1/APP mice. Brain Res 1256:173–179. doi:10.1016/j.brainres.2008.12.028

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Silva CF, Duarte FS, Lima TC, de Oliveira CL (2011) Effects of social isolation and enriched environment on behavior of adult Swiss mice do not require hippocampal neurogenesis. Behav Brain Res 225(1):85–90. doi:10.1016/j.bbr.2011.07.007

    PubMed  Google Scholar 

  230. Brandt MD, Maass A, Kempermann G, Storch A (2010) Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 32(8):1256–1264. doi:10.1111/j.1460-9568.2010.07410.x

    PubMed  Google Scholar 

  231. Garrett L, Lie DC, Hrabe de Angelis M, Wurst W, Holter SM (2012) Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests. BMC Neurosci 13:61. doi:10.1186/1471-2202-13-61

    PubMed Central  PubMed  Google Scholar 

  232. Marlatt MW, Potter MC, Lucassen PJ, van Praag H (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 72(6):943–952. doi:10.1002/dneu.22009

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Kim SE, Ko IG, Kim BK, Shin MS, Cho S, Kim CJ, Kim SH, Baek SS, Lee EK, Jee YS (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365. doi:10.1016/j.exger.2010.02.005

    PubMed  Google Scholar 

  234. Li H, Liang A, Guan F, Fan R, Chi L, Yang B (2013) Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain Res 1531:1–8. doi:10.1016/j.brainres.2013.07.041

    CAS  PubMed  Google Scholar 

  235. Valero J, Espana J, Parra-Damas A, Martin E, Rodriguez-Alvarez J, Saura CA (2011) Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw, Ind) transgenic mice. PLoS One 6(2):e16832. doi:10.1371/journal.pone.0016832

    CAS  PubMed Central  PubMed  Google Scholar 

  236. Vivar C, Potter MC, van Praag H (2013) All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 15:189–210. doi:10.1007/7854_2012_220

    PubMed  Google Scholar 

  237. Van der Borght K, Havekes R, Bos T, Eggen BJ, Van der Zee EA (2007) Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci 121(2):324–334. doi:10.1037/0735-7044.121.2.324

    PubMed  Google Scholar 

  238. Coelho FG, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, Teodorov E, Santos-Galduroz RF (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimers Dis 39(2):401–408. doi:10.3233/JAD-131073

    CAS  PubMed  Google Scholar 

  239. Marlatt MW, Potter MC, Bayer TA, van Praag H, Lucassen PJ (2013) Prolonged running, not fluoxetine treatment, increases neurogenesis, but does not alter neuropathology, in the 3xTg mouse model of Alzheimer’s disease. Curr Top Behav Neurosci 15:313–340. doi:10.1007/7854_2012_237

    PubMed  Google Scholar 

  240. Flensmark J (2009) Physical activity, eccentric contractions of plantar flexors, and neurogenesis: therapeutic potential of flat shoes in psychiatric and neurological disorders. Med Hypotheses 73(2):130–132. doi:10.1016/j.mehy.2009.03.009

    PubMed  Google Scholar 

  241. Kobilo T, Yuan C, van Praag H (2011) Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem 18(2):103–107. doi:10.1101/lm.2001611

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Nishijima T, Llorens-Martin M, Tejeda GS, Inoue K, Yamamura Y, Soya H, Trejo JL, Torres-Aleman I (2013) Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice. Behav Brain Res 245:34–41. doi:10.1016/j.bbr.2013.02.009

    PubMed  Google Scholar 

  243. Yasuhara T, Hara K, Maki M, Matsukawa N, Fujino H, Date I, Borlongan CV (2007) Lack of exercise, via hindlimb suspension, impedes endogenous neurogenesis. Neuroscience 149(1):182–191. doi:10.1016/j.neuroscience.2007.07.045

    CAS  PubMed  Google Scholar 

  244. Fabel K, Kempermann G (2008) Physical activity and the regulation of neurogenesis in the adult and aging brain. Neruomol Med 10(2):59–66. doi:10.1007/s12017-008-8031-4

    CAS  Google Scholar 

  245. Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci 3:50. doi:10.3389/neuro.22.002.2009

    PubMed Central  PubMed  Google Scholar 

  246. Curlik DM 2nd, Shors TJ (2013) Training your brain: do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology 64:506–514. doi:10.1016/j.neuropharm.2012.07.027

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    CAS  PubMed  Google Scholar 

  248. Haroutunian V, Santucci AC, Davis KL (1990) Implications of multiple transmitter system lesions for cholinomimetic therapy in Alzheimer’s disease. Prog Brain Res 84:333–346

    CAS  PubMed  Google Scholar 

  249. Tellez S, Colpaert F, Marien M (1999) Alpha2-adrenoceptor modulation of cortical acetylcholine release in vivo. Neuroscience 89(4):1041–1050

    CAS  PubMed  Google Scholar 

  250. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosci Off J Soc Neurosci 26(2):467–478. doi:10.1523/JNEUROSCI.4265-05.2006

    CAS  Google Scholar 

  251. Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24(1):1–23

    CAS  PubMed  Google Scholar 

  252. Insua D, Suarez ML, Santamarina G, Sarasa M, Pesini P (2010) Dogs with canine counterpart of Alzheimer’s disease lose noradrenergic neurons. Neurobiol Aging 31(4):625–635. doi:10.1016/j.neurobiolaging.2008.05.014

    CAS  PubMed  Google Scholar 

  253. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211–223. doi:10.1038/nrn2573

    CAS  PubMed  Google Scholar 

  254. Combarros O, Warden DR, Hammond N, Cortina-Borja M, Belbin O, Lehmann MG, Wilcock GK, Brown K, Kehoe PG, Barber R, Coto E, Alvarez V, Deloukas P, Gwilliam R, Heun R, Kolsch H, Mateo I, Oulhaj A, Arias-Vasquez A, Schuur M, Aulchenko YS, Ikram MA, Breteler MM, van Duijn CM, Morgan K, Smith AD, Lehmann DJ (2010) The dopamine beta-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer’s disease in the Epistasis Project. BMC Med Genet 11:162. doi:10.1186/1471-2350-11-162

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Robertson IH (2013) A noradrenergic theory of cognitive reserve: implications for Alzheimer’s disease. Neurobiol Aging 34(1):298–308. doi:10.1016/j.neurobiolaging.2012.05.019

    CAS  PubMed  Google Scholar 

  256. Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP (2001) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 79(1):200–210

    CAS  PubMed  Google Scholar 

  257. Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E (2002) Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 41(5):357–365

    CAS  PubMed  Google Scholar 

  258. Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107(13):6058–6063. doi:10.1073/pnas.0909586107

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Mannari C, Origlia N, Scatena A, Del Debbio A, Catena M, Dell’agnello G, Barraco A, Giovannini L, Dell’osso L, Domenici L, Piccinni A (2008) BDNF level in the rat prefrontal cortex increases following chronic but not acute treatment with duloxetine, a dual acting inhibitor of noradrenaline and serotonin re-uptake. Cell Mol Neurobiol 28(3):457–468. doi:10.1007/s10571-007-9254-x

    CAS  PubMed  Google Scholar 

  260. Masuda T, Nakagawa S, Boku S, Nishikawa H, Takamura N, Kato A, Inoue T, Koyama T (2012) Noradrenaline increases neural precursor cells derived from adult rat dentate gyrus through beta2 receptor. Prog Neuro-Psychopharmacol Biol Psychiatry 36(1):44–51. doi:10.1016/j.pnpbp.2011.08.019

    CAS  Google Scholar 

  261. Grinberg LT, Rueb U, Heinsen H (2011) Brainstem: neglected locus in neurodegenerative diseases. Front Neurol 2:42. doi:10.3389/fneur.2011.00042

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Traver S, Salthun-Lassalle B, Marien M, Hirsch EC, Colpaert F, Michel PP (2005) The neurotransmitter noradrenaline rescues septal cholinergic neurons in culture from degeneration caused by low-level oxidative stress. Mol Pharmacol 67(6):1882–1891. doi:10.1124/mol.104.007864

    CAS  PubMed  Google Scholar 

  263. Naka F, Shiga T, Yaguchi M, Okado N (2002) An enriched environment increases noradrenaline concentration in the mouse brain. Brain Res 924(1):124–126

    CAS  PubMed  Google Scholar 

  264. Grilli M, Zappettini S, Zanardi A, Lagomarsino F, Pittaluga A, Zoli M, Marchi M (2009) Exposure to an enriched environment selectively increases the functional response of the pre-synaptic NMDA receptors which modulate noradrenaline release in mouse hippocampus. J Neurochem 110(5):1598–1606. doi:10.1111/j.1471-4159.2009.06265.x

    CAS  PubMed  Google Scholar 

  265. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746. doi:10.1016/S1474-4422(07)70178-3

    PubMed  Google Scholar 

  266. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127. doi:10.1016/S1474-4422(10)70223-4

    PubMed  Google Scholar 

  267. Kim JW, Lee DY, Seo EH, Sohn BK, Park SY, Choo IH, Youn JC, Jhoo JH, Kim KW, Woo JI (2013) Improvement of dementia screening accuracy of mini-mental state examination by education-adjustment and supplementation of frontal assessment battery performance. J Korean Med Sci 28(10):1522–1528. doi:10.3346/jkms.2013.28.10.1522

    PubMed Central  PubMed  Google Scholar 

  268. Olazaran J, Reisberg B, Clare L, Cruz I, Pena-Casanova J, Del Ser T, Woods B, Beck C, Auer S, Lai C, Spector A, Fazio S, Bond J, Kivipelto M, Brodaty H, Rojo JM, Collins H, Teri L, Mittelman M, Orrell M, Feldman HH, Muniz R (2010) Nonpharmacological therapies in Alzheimer’s disease: a systematic review of efficacy. Dement Geriatr Cogn Disord 30(2):161–178. doi:10.1159/000316119

    PubMed  Google Scholar 

  269. Herholz SC, Herholz RS, Herholz K (2013) Non-pharmacological interventions and neuroplasticity in early stage Alzheimer’s disease. Expert Rev Neurother 13(11):1235–1245. doi:10.1586/14737175.2013.845086

    CAS  PubMed  Google Scholar 

  270. Olchik MR, Farina J, Steibel N, Teixeira AR, Yassuda MS (2013) Memory training (MT) in mild cognitive impairment (MCI) generates change in cognitive performance. Arch Gerontol Geriatr 56(3):442–447. doi:10.1016/j.archger.2012.11.007

    PubMed  Google Scholar 

  271. Reijnders J, van Heugten C, van Boxtel M (2013) Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res Rev 12(1):263–275. doi:10.1016/j.arr.2012.07.003

    PubMed  Google Scholar 

  272. Garcia-Alberca JM (2012) Cognitive intervention therapy as treatment for behaviour disorders in Alzheimer disease: evidence on efficacy and neurobiological correlations. Neurologia. doi:10.1016/j.nrl.2012.10.002

    PubMed  Google Scholar 

  273. Giordano M, Dominguez LJ, Vitrano T, Curatolo M, Ferlisi A, Di Prima A, Belvedere M, Barbagallo M (2010) Combination of intensive cognitive rehabilitation and donepezil therapy in Alzheimer’s disease (AD). Arch Gerontol Geriatr 51(3):245–249. doi:10.1016/j.archger.2009.11.008

    PubMed  Google Scholar 

  274. Bentwich J, Dobronevsky E, Aichenbaum S, Shorer R, Peretz R, Khaigrekht M, Marton RG, Rabey JM (2011) Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease: a proof of concept study. J Neural Transm 118(3):463–471. doi:10.1007/s00702-010-0578-1

    CAS  PubMed  Google Scholar 

  275. Rabey JM, Dobronevsky E, Aichenbaum S, Gonen O, Marton RG, Khaigrekht M (2013) Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J Neural Transm 120(5):813–819. doi:10.1007/s00702-012-0902-z

    PubMed  Google Scholar 

  276. Teri L, McCurry SM, Buchner DM, Logsdon RG, LaCroix AZ, Kukull WA, Barlow WE, Larson EB (1998) Exercise and activity level in Alzheimer’s disease: a potential treatment focus. J Rehabil Res Dev 35(4):411–419

    CAS  PubMed  Google Scholar 

  277. Arntzen KA, Schirmer H, Wilsgaard T, Mathiesen EB (2011) Impact of cardiovascular risk factors on cognitive function: the Tromso study. Eur J Neurol Off J Eur Fed Neurol Soc 18(5):737–743. doi:10.1111/j.1468-1331.2010.03263.x

    CAS  Google Scholar 

  278. Tamosiunas A, Baceviciene M, Reklaitiene R, Radisauskas R, Jureniene K, Azaraviciene A, Luksiene D, Malinauskiene V, Daugeliene E, Sapranaviciute-Zabazlajeva L (2012) Cardiovascular risk factors and cognitive function in middle aged and elderly Lithuanian urban population: results from the HAPIEE study. BMC Neurol 12:149. doi:10.1186/1471-2377-12-149

    PubMed Central  PubMed  Google Scholar 

  279. Reis JP, Loria CM, Launer LJ, Sidney S, Liu K, Jacobs DR Jr, Zhu N, Lloyd-Jones DM, He K, Yaffe K (2013) Cardiovascular health through young adulthood and cognitive functioning in midlife. Ann Neurol 73(2):170–179. doi:10.1002/ana.23836

    PubMed Central  PubMed  Google Scholar 

  280. Chong TW, Doyle CJ, Cyarto EV, Cox KL, Ellis KA, Ames D, Lautenschlager NT, Group AR (2012) Physical activity program preferences and perspectives of older adults with and without cognitive impairment. Asia-Pac Psychiatry Off J Pac Rim Coll Psychiatrist. doi:10.1111/appy.12015

    Google Scholar 

  281. Vina J, Borras C, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Gambini J, Ingles M, Gomez-Cabrera MC (2013) Pharmacological properties of physical exercise in the elderly. Curr Pharm Des. doi:10.2174/13816128113196660704, PMID: 24079769

  282. Voelcker-Rehage C, Godde B, Staudinger UM (2011) Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci 5:26. doi:10.3389/fnhum.2011.00026

    PubMed Central  PubMed  Google Scholar 

  283. Prohaska TR, Peters KE (2007) Physical activity and cognitive functioning: translating research to practice with a public health approach. Alzheimers Dement J Alzheimers Association 3(2 Suppl):S58–S64. doi:10.1016/j.jalz.2007.01.005

    Google Scholar 

  284. McLeroy KR, Bibeau D, Steckler A, Glanz K (1988) An ecological perspective on health promotion programs. Health Educ Q 15(4):351–377

    CAS  PubMed  Google Scholar 

  285. Vidovich MR, Shaw J, Flicker L, Almeida OP (2011) Cognitive activity for the treatment of older adults with mild Alzheimer’s disease (AD)—PACE AD: study protocol for a randomised controlled trial. Trials 12:47. doi:10.1186/1745-6215-12-47

    PubMed Central  PubMed  Google Scholar 

  286. Antoniou M, Gunasekera GM, Wong PC (2013) Foreign language training as cognitive therapy for age-related cognitive decline: a hypothesis for future research. Neurosci Biobehav Rev 37(10 Pt 2):2689–2698. doi:10.1016/j.neubiorev.2013.09.004

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the National Natural Science Foundation of China (81000544, 81171209, and 81371406), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004 and ZR2011HZ001), and the Shandong Provincial Outstanding Medical Academic Professional Program.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Tai Yu or Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Yu, JT., Tan, MS. et al. Cognitive Reserve and Alzheimer’s Disease. Mol Neurobiol 51, 187–208 (2015). https://doi.org/10.1007/s12035-014-8720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8720-y

Keywords

Navigation