Skip to main content
Log in

Neurochemical properties of the synapses between the parabrachial nucleus-derived CGRP-positive axonal terminals and the GABAergic neurons in the lateral capsular division of central nucleus of amygdala

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The lateral capsular division of central nucleus of amygdala (CeC) contains neurons using γ-amino butyric acid (GABA) as the predominant neurotransmitter and expresses abundant calcitonin gene-related peptide (CGRP)-positive terminals. However, the relationship between them has not been revealed yet. Using GAD67-green fluorescent protein (GFP) knock-in mouse, we investigated the neurochemical features of synapses between CGRP-positive terminals and GABAergic neurons within CeC and the potential involvement of CGRP1 receptor by combining fluorescent in situ hybridization for CGRP1 receptor mRNA with immunofluorescent histochemistry for GFP and CGRP. The ultrastructures of these synapses were investigated with pre-embedding electron microscopy for GFP and CGRP. We found that some GABAergic neurons in the CeC received parabrachial nucleus (PBN) derived CGRP innervations and some of these GABAergic neurons can be activated by subcutaneous injection of formalin. Moreover, more than 90 % GABAergic neurons innervated by CGRP-positive terminal also express CGRP1 receptor mRNA. The CGRP-positive fibers made symmetric synapses onto the GABAergic somata, and asymmetric synapses onto the GABA-LI dendritic shafts and spines. This study provides direct ultrastructural evidences for the synaptic contacts between CGRP-positive terminals and GABAergic neurons within the CeC, which may underlie the pain-related neural pathway from PBN to CeC and be involved in the chronic pain modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anand KJ, Craig KD (1996) New perspectives on the definition of pain. Pain 67(1):3–6, discussion 209–211

    Article  CAS  PubMed  Google Scholar 

  2. Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57(1):1–164

    Article  CAS  PubMed  Google Scholar 

  3. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288(5472):1769–1772

    Article  CAS  PubMed  Google Scholar 

  4. Price DD (2002) Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2(6):392–403, 339

    Article  PubMed  Google Scholar 

  5. McWilliams LA, Goodwin RD, Cox BJ (2004) Depression and anxiety associated with three pain conditions: results from a nationally representative sample. Pain 111(1–2):77–83

    Article  PubMed  Google Scholar 

  6. Rhudy JL, Meagher MW (2003) Negative affect: effects on an evaluative measure of human pain. Pain 104(3):617–626

    Article  PubMed  Google Scholar 

  7. LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235

    Article  CAS  PubMed  Google Scholar 

  8. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  9. Neugebauer V, Li W (2003) Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 89(2):716–727

    Article  PubMed  Google Scholar 

  10. Neugebauer V, Li W, Bird GC, Bhave G, Gereau RWT (2003) Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 23(1):52–63

    CAS  PubMed  Google Scholar 

  11. Neugebauer V, Li W, Bird GC, Han JS (2004) The amygdala and persistent pain. Neuroscientist 10(3):221–234

    Article  PubMed  Google Scholar 

  12. Schiess MC, Callahan PM, Zheng H (1999) Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J Neurosci Res 58(5):663–673

    Article  CAS  PubMed  Google Scholar 

  13. Puelles L (2001) Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philos Trans R Soc Lond B Biol Sci 356(1414):1583–1598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chieng BC, Christie MJ, Osborne PB (2006) Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J Comp Neurol 497(6):910–927

    Article  CAS  PubMed  Google Scholar 

  15. Bernard JF, Bandler R (1998) Parallel circuits for emotional coping behaviour: new pieces in the puzzle. J Comp Neurol 401(4):429–436

    Article  CAS  PubMed  Google Scholar 

  16. Bernard JF, Alden M, Besson JM (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329(2):201–229

    Article  CAS  PubMed  Google Scholar 

  17. Sarhan M, Freund-Mercier MJ, Veinante P (2005) Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions. J Comp Neurol 491(4):418–442

    Article  PubMed  Google Scholar 

  18. Pare D, Smith Y (1993) The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 57(4):1077–1090

    Article  CAS  PubMed  Google Scholar 

  19. Saha S, Batten TF, Henderson Z (2000) A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience 99(4):613–626

    Article  CAS  PubMed  Google Scholar 

  20. Batten TF, Gamboa-Esteves FO, Saha S (2002) Evidence for peptide co-transmission in retrograde- and anterograde-labelled central nucleus of amygdala neurones projecting to NTS. Auton Neurosci 98(1–2):28–32

    Article  CAS  PubMed  Google Scholar 

  21. Finnegan TF, Chen SR, Pan HL (2005) Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J Pharmacol Exp Ther 312(2):441–448

    Article  CAS  PubMed  Google Scholar 

  22. Kang Y, Yan J, Huang T (2004) Microinjection of bicuculline into the central nucleus of the amygdala alters gustatory responses of the rat parabrachial nucleus. Brain Res 1028(1):39–47

    Article  CAS  PubMed  Google Scholar 

  23. Cassell MD, Freedman LJ, Shi C (1999) The intrinsic organization of the central extended amygdala. Ann N Y Acad Sci 877:217–241

    Article  CAS  PubMed  Google Scholar 

  24. Veinante P, Stoeckel ME, Freund-Mercier MJ (1997) GABA- and peptide-immunoreactivities co-localize in the rat central extended amygdala. Neuroreport 8(13):2985–2989

    Article  CAS  PubMed  Google Scholar 

  25. Ma J, Ye N, Lange N, Cohen BM (2003) Dynorphinergic GABA neurons are a target of both typical and atypical antipsychotic drugs in the nucleus accumbens shell, central amygdaloid nucleus and thalamic central medial nucleus. Neuroscience 121(4):991–998

    Article  CAS  PubMed  Google Scholar 

  26. Bernard JF, Besson JM (1990) The spino (trigemino) pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 63(3):473–490

    CAS  PubMed  Google Scholar 

  27. Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293(4):540–580

    Article  CAS  PubMed  Google Scholar 

  28. Takano K, Kato F (2003) Inspiration-promoting vagal reflex in anaesthetized rabbits after rostral dorsolateral pons lesions. J Physiol 550(Pt 3):973–983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Takeuchi Y, Xie Q, Miki T, Matsumoto Y, Satriotomo I, Li HP, Gu H (2004) Parabrachial inputs to Fos-immunoreactive neurons in the lateral central nucleus of amygdala activated by hypotension: a light and electron microscopic study in the rat. Brain Res Bull 64(2):171–180

    Article  PubMed  Google Scholar 

  30. Poliacek I, Halasova E, Jakus J, Murin P, Barani H, Stransky A, Bolser DC (2007) Brainstem regions involved in the expiration reflex. A c-fos study in anesthetized cats. Brain Res 1184:168–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yamamoto T, Takemura M, Inui T, Torii K, Maeda N, Ohmoto M, Matsumoto I, Abe K (2009) Functional organization of the rodent parabrachial nucleus. Ann N Y Acad Sci 1170:378–382

    Article  PubMed  Google Scholar 

  32. Neugebauer V, Li W (2002) Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 87(1):103–112

    PubMed  Google Scholar 

  33. Shimada S, Shiosaka S, Emson PC, Hillyard CJ, Girgis S, MacIntyre I, Tohyama M (1985) Calcitonin gene-related peptidergic projection from the parabrachial area to the forebrain and diencephalon in the rat: an immunohistochemical analysis. Neuroscience 16(3):607–616

    Article  CAS  PubMed  Google Scholar 

  34. Kruger L, Sternini C, Brecha NC, Mantyh PW (1988) Distribution of calcitonin gene-related peptide immunoreactivity in relation to the rat central somatosensory projection. J Comp Neurol 273(2):149–162

    Article  CAS  PubMed  Google Scholar 

  35. Harrigan EA, Magnuson DJ, Thunstedt GM, Gray TS (1994) Corticotropin releasing factor neurons are innervated by calcitonin gene-related peptide terminals in the rat central amygdaloid nucleus. Brain Res Bull 33(5):529–534

    Article  CAS  PubMed  Google Scholar 

  36. Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474):111–114

    Article  CAS  PubMed  Google Scholar 

  37. Han JS, Li W, Neugebauer V (2005) Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 25(46):10717–10728

    Article  CAS  PubMed  Google Scholar 

  38. Han JS, Adwanikar H, Li Z, Ji G, Neugebauer V (2010) Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol Pain 6:10

    Article  PubMed Central  PubMed  Google Scholar 

  39. Shimada S, Inagaki S, Narita N, Takagi H (1992) Synaptic contacts between CGRP-immunoreactive terminals and enkephalin-immunoreactive neurons in the central amygdaloid nucleus of the rat. Neurosci Lett 134(2):243–246

    Article  CAS  PubMed  Google Scholar 

  40. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79

    Article  CAS  PubMed  Google Scholar 

  41. Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38(3):231–236

    Article  CAS  PubMed  Google Scholar 

  42. Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15(1):9–13

    Article  CAS  PubMed  Google Scholar 

  43. Polgar E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111(1–2):144–150

    Article  CAS  PubMed  Google Scholar 

  44. Shimada S, Inagaki S, Kubota Y, Kito S, Funaki H, Takagi H (1989) Light and electron microscopic studies of calcitonin gene-related peptide-like immunoreactive terminals in the central nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Exp Brain Res 77(1):217–220

    Article  CAS  PubMed  Google Scholar 

  45. van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21(5):649–678

    Article  PubMed  Google Scholar 

  46. Oliver KR, Wainwright A, Heavens RP, Hill RG, Sirinathsinghji DJ (1998) Distribution of novel CGRP1 receptor and adrenomedullin receptor mRNAs in the rat central nervous system. Brain Res Mol Brain Res 57(1):149–154

    Article  CAS  PubMed  Google Scholar 

  47. Sliwinska-Kowalska M, Parakkal M, Schneider ME, Fex J (1989) CGRP-like immunoreactivity in the guinea pig organ of Corti: a light and electron microscopy study. Hear Res 42(1):83–95

    Article  CAS  PubMed  Google Scholar 

  48. Schwaber JS, Sternini C, Brecha NC, Rogers WT, Card JP (1988) Neurons containing calcitonin gene-related peptide in the parabrachial nucleus project to the central nucleus of the amygdala. J Comp Neurol 270(3):416–426, 398–419

    Article  CAS  PubMed  Google Scholar 

  49. D’Hanis W, Linke R, Yilmazer-Hanke DM (2007) Topography of thalamic and parabrachial calcitonin gene-related peptide (CGRP) immunoreactive neurons projecting to subnuclei of the amygdala and extended amygdala. J Comp Neurol 505(3):268–291

    Article  PubMed  Google Scholar 

  50. McDonald AJ (1982) Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol 208(4):401–418

    Article  CAS  PubMed  Google Scholar 

  51. Oka T, Tsumori T, Yokota S, Yasui Y (2008) Neuroanatomical and neurochemical organization of projections from the central amygdaloid nucleus to the nucleus retroambiguus via the periaqueductal gray in the rat. Neurosci Res 62(4):286–298

    Article  CAS  PubMed  Google Scholar 

  52. Jia HG, Zhang GY, Wan Q (2005) A GABAergic projection from the central nucleus of the amygdala to the parabrachial nucleus: an ultrastructural study of anterograde tracing in combination with post-embedding immunocytochemistry in the rat. Neurosci Lett 382(1–2):153–157

    Article  CAS  PubMed  Google Scholar 

  53. Jia HG, Rao ZR, Shi JW (1997) Evidence of gamma-aminobutyric acidergic control over the catecholaminergic projection from the medulla oblongata to the central nucleus of the amygdala. J Comp Neurol 381(3):262–281

    Article  CAS  PubMed  Google Scholar 

  54. Tsubouchi K, Tsumori T, Yokota S, Okunishi H, Yasui Y (2007) A disynaptic pathway from the central amygdaloid nucleus to the paraventricular hypothalamic nucleus via the parastrial nucleus in the rat. Neurosci Res 59(4):390–398

    Article  PubMed  Google Scholar 

  55. Tsumori T, Yokota S, Kishi T, Qin Y, Oka T, Yasui Y (2006) Insular cortical and amygdaloid fibers are in contact with posterolateral hypothalamic neurons projecting to the nucleus of the solitary tract in the rat. Brain Res 1070(1):139–144

    Article  CAS  PubMed  Google Scholar 

  56. Yajima Y, Hayashi Y, Yoshii N (1980) The midbrain central gray substance as a highly sensitive neural structure for the production of ultrasonic vocalization in the rat. Brain Res 198(2):446–452

    Article  CAS  PubMed  Google Scholar 

  57. VanderHorst VG, Holstege G (1996) A concept for the final common pathway of vocalization and lordosis behavior in the cat. Prog Brain Res 107:327–342

    Article  CAS  PubMed  Google Scholar 

  58. Vanderhorst VG, Terasawa E, Ralston HJ 3rd, Holstege G (2000) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424(2):251–268

    Article  CAS  PubMed  Google Scholar 

  59. Kits KS, Dreijer AM, Lodder JC, Borgdorff A, Wadman WJ (1997) High intracellular calcium levels during and after electrical discharges in molluscan peptidergic neurons. Neuroscience 79(1):275–284

    Article  CAS  PubMed  Google Scholar 

  60. Salio C, Lossi L, Ferrini F, Merighi A (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326(2):583–598

    Article  CAS  PubMed  Google Scholar 

  61. Tallent MK (2008) Presynaptic inhibition of glutamate release by neuropeptides: use-dependent synaptic modification. Results Probl Cell Differ 44:177–200

    Article  CAS  PubMed  Google Scholar 

  62. Abbadie C, Taylor BK, Peterson MA, Basbaum AI (1997) Differential contribution of the two phases of the formalin test to the pattern of c-fos expression in the rat spinal cord: studies with remifentanil and lidocaine. Pain 69(1–2):101–110

    Article  CAS  PubMed  Google Scholar 

  63. Zhang RX, Wang R, Chen JY, Qiao JT (1994) Effects of descending inhibitory systems on the c-Fos expression in the rat spinal cord during formalin-induced noxious stimulation. Neuroscience 58(2):299–304

    Article  CAS  PubMed  Google Scholar 

  64. Wang CC, Willis WD, Westlund KN (1999) Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. J Comp Neurol 415(3):341–367

    Article  CAS  PubMed  Google Scholar 

  65. Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M (2003) Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 344(3):197–200

    Article  CAS  PubMed  Google Scholar 

  66. Kaneko M, Mestre C, Sanchez EH, Hammond DL (2000) Intrathecally administered gabapentin inhibits formalin-evoked nociception and the expression of Fos-like immunoreactivity in the spinal cord of the rat. J Pharmacol Exp Ther 292(2):743–751

    CAS  PubMed  Google Scholar 

  67. Carrasquillo Y, Gereau RWT (2007) Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 27(7):1543–1551

    Article  CAS  PubMed  Google Scholar 

  68. Carrasquillo Y, Gereau RWT (2008) Hemispheric lateralization of a molecular signal for pain modulation in the amygdala. Mol Pain 4:24

    Article  PubMed Central  PubMed  Google Scholar 

  69. Coleman-Mesches K, McGaugh JL (1995) Differential involvement of the right and left amygdalae in expression of memory for aversively motivated training. Brain Res 670(1):75–81

    Article  CAS  PubMed  Google Scholar 

  70. Baker KB, Kim JJ (2004) Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav Neurosci 118(1):15–23

    Article  PubMed  Google Scholar 

  71. Lee GP, Meador KJ, Loring DW, Allison JD, Brown WS, Paul LK, Pillai JJ, Lavin TB (2004) Neural substrates of emotion as revealed by functional magnetic resonance imaging. Cogn Behav Neurol 17(1):9–17

    Article  PubMed  Google Scholar 

  72. Morris JS, Ohman A, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393(6684):467–470

    Article  CAS  PubMed  Google Scholar 

  73. Ji G, Neugebauer V (2009) Hemispheric lateralization of pain processing by amygdala neurons. J Neurophysiol 102(4):2253–2264

    Article  PubMed Central  PubMed  Google Scholar 

  74. Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102(3):527–540

    Article  CAS  PubMed  Google Scholar 

  75. Dong YL, Fukazawa Y, Wang W, Kamasawa N, Shigemoto R (2010) Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. J Comp Neurol 518(23):4771–4791

    Article  PubMed  Google Scholar 

  76. Han JS, Fu Y, Bird GC, Neugebauer V (2006) Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Mol Pain 2:18

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ikeda R, Takahashi Y, Inoue K, Kato F (2007) NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 127(1–2):161–172

    Article  CAS  PubMed  Google Scholar 

  78. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27(1):1–39

    Article  CAS  PubMed  Google Scholar 

  79. Ju G (1991) Calcitonin gene-related peptide-like immunoreactivity and its relation with neurotensin- and corticotropin-releasing hormone-like immunoreactive neurons in the bed nuclei of the stria terminalis in the rat. Brain Res Bull 27(5):617–624

    Article  CAS  PubMed  Google Scholar 

  80. Kozicz T, Arimura A (2001) Axon terminals containing CGRP-immunoreactivity form synapses with CRF- and Met-enkephalin-immunopositive neurons in the laterodorsal division of the bed nucleus of the stria terminalis in the rat. Brain Res 893(1–2):11–20

    Article  CAS  PubMed  Google Scholar 

  81. Kozicz T (2001) Axon terminals containing tyrosine hydroxylase- and dopamine-beta-hydroxylase immunoreactivity form synapses with galanin immunoreactive neurons in the lateral division of the bed nucleus of the stria terminalis in the rat. Brain Res 914(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81171050 to Y.-L. Dong) and International Science & Technology Cooperation Program of China (No. 2011DFA32560 to S.-X. Wu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Wang, Sheng-Xi Wu or Yu-Lin Dong.

Additional information

Ya-Cheng Lu and Yan-Zhou Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Graphic illustration showing the boundaries of different subnuclei of CeA. A: Nissl staining indicating the localization of central amygdaloid nucleus. B: high-magnification image of boxed area in A showing the different subnuclei of CeA; C: GABAergic neuron distribution in CeA in same section as A and B. *: one vessel signal in bright and dark field photos. Scale bars = 1 mm in A, 200 μm in B, 100 μm in C. (TIFF 1722 kb)

Supplementary Fig. 2

Immunofluorescent images showing the double-labeling of GFP-LI neurons (green, A) and NeuN (red, B). Scale bars = 100 μm. (TIFF 3521 kb)

Supplementary Table 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YC., Chen, YZ., Wei, YY. et al. Neurochemical properties of the synapses between the parabrachial nucleus-derived CGRP-positive axonal terminals and the GABAergic neurons in the lateral capsular division of central nucleus of amygdala. Mol Neurobiol 51, 105–118 (2015). https://doi.org/10.1007/s12035-014-8713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8713-x

Keywords

Navigation