Skip to main content
Log in

Apparent Reduction of ADAM10 in Scrapie-Infected Cultured Cells and in the Brains of Scrapie-Infected Rodents

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It has been described that A disintegrin and metalloproteinase (ADAM10) may involve in the physiopathology of prion diseases, but the direct molecular basis still remains unsolved. In this study, we confirmed that ADAM10 was able to cleave recombinant human prion protein in vitro. Using immunoprecipitation tests (IP) and immunofluorescent assays (IFA), reliable molecular interaction between the native cellular form of PrP (PrPC) and ADAM10 was observed not only in various cultured neuronal cell lines but also in brain homogenates of healthy hamsters and mice. Only mature ADAM10 (after removal of its prodomain) molecules showed the binding activity with the native PrPC. Remarkably more prion protein (PrP)-ADAM10 complexes were detected in the membrane fraction of cultured cells. In the scrapie-infected SMB cell model, the endogenous ADAM10 levels, especially the mature ADAM10, were significantly decreased in the fraction of cell membrane. IP and IFA tests of prion-infected SMB-S15 cells confirmed no detectable PrP-ADAM10 complex in the cellular lysates and PrP-ADAM10 co-localization on the cell surface. Furthermore, we demonstrated that the levels of ADAM10 in the brain homogenates of scrapie agent 263K-infected hamsters and agent ME7-infected mice were also almost diminished at the terminal stage, showing time-dependent decreases during the incubation period. Our data here provide the solid molecular basis for the endoproteolysis of ADAM10 on PrP molecules and interaction between ADAM10 and PrPC. Obvious loss of ADAM10 during prion infection in vitro and in vivo highlights that ADAM10 may play essential pathophysiological roles in prion replication and accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89(4):1105–1152

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23(1):89–99

    Article  CAS  PubMed  Google Scholar 

  4. Taylor DR, Parkin ET, Cocklin SL, Ault JR, Ashcroft AE, Turner AJ, Hooper NM (2009) Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J Biol Chem 284(34):22590–22600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen SG, Teplow DB, Parchi P, Teller JK, Gambetti P, Autilio-Gambetti L (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J Biol Chem 270(32):19173–19180

    Article  CAS  PubMed  Google Scholar 

  6. Harris DA, Huber MT, van Dijken P, Shyng SL, Chait BT, Wang R (1993) Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32(4):1009–1016

    Article  CAS  PubMed  Google Scholar 

  7. Jimenez-Huete A, Lievens PM, Vidal R, Piccardo P, Ghetti B, Tagliavini F, Frangione B, Prelli F (1998) Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153(5):1561–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Vincent B, Paitel E, Saftig P, Frobert Y, Hartmann D, De Strooper B, Grassi J, Lopez-Perez E, Checler F (2001) The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J Biol Chem 276(41):37743–37746

    CAS  PubMed  Google Scholar 

  9. Mange A, Beranger F, Peoc’h K, Onodera T, Frobert Y, Lehmann S (2004) Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol Cell 96(2):125–132

    Article  CAS  PubMed  Google Scholar 

  10. Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease (s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 279(21):21948–21956

    Article  CAS  PubMed  Google Scholar 

  12. Owen JP, Rees HC, Maddison BC, Terry LA, Thorne L, Jackman R, Whitelam GC, Gough KC (2007) Molecular profiling of ovine prion diseases by using thermolysin-resistant PrPSc and endogenous C2 PrP fragments. J Virol 81(19):10532–10539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cisse MA, Sunyach C, Lefranc-Jullien S, Postina R, Vincent B, Checler F (2005) The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J Biol Chem 280(49):40624–40631

    Article  CAS  PubMed  Google Scholar 

  14. Hooper NM (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans 33(Pt 2):335–338

    CAS  PubMed  Google Scholar 

  15. Yamamoto S, Higuchi Y, Yoshiyama K, Shimizu E, Kataoka M, Hijiya N, Matsuura K (1999) ADAM family proteins in the immune system. Immunol Today 20(6):278–284

    Article  CAS  PubMed  Google Scholar 

  16. White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15(5):598–606

    Article  CAS  PubMed  Google Scholar 

  17. Novak U (2004) ADAM proteins in the brain. J Clin Neurosci 11(3):227–235

    Article  CAS  PubMed  Google Scholar 

  18. Huovila AP, Turner AJ, Pelto-Huikko M, Karkkainen I, Ortiz RM (2005) Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30(7):413–422

    Article  CAS  PubMed  Google Scholar 

  19. Yang P, Baker KA, Hagg T (2006) The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 79(2):73–94

    Article  CAS  PubMed  Google Scholar 

  20. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289

    Article  CAS  PubMed  Google Scholar 

  21. Murphy G (2008) The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8(12):929–941

    Article  CAS  PubMed  Google Scholar 

  22. Benarroch EE (2012) ADAM proteins, their ligands, and clinical implications. Neurology 78(12):914–920

    Article  PubMed  Google Scholar 

  23. Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M (2012) Proteolytic processing of the prion protein in health and disease. Am J Neurodegener Dis 1(1):15–31

    PubMed Central  PubMed  Google Scholar 

  24. Dong CF, Wang XF, Wang X, Shi S, Wang GR, Shan B, An R, Li XL, Zhang BY, Han J, Dong XP (2008) Molecular interaction between prion protein and GFAP both in native and recombinant forms in vitro. Med Microbiol Immunol 197(4):361–368

    Article  CAS  PubMed  Google Scholar 

  25. Haig DA, Clarke MC (1971) Multiplication of the scrapie agent. Nature 234(5324):106–107

    Article  CAS  PubMed  Google Scholar 

  26. Chen JM, Gao C, Shi Q, Shan B, Lei YJ, Dong CF, An R, Wang GR, Zhang BY, Han J, Dong XP (2008) Different expression patterns of CK2 subunits in the brains of experimental animals and patients with transmissible spongiform encephalopathies. Arch Virol 153(6):1013–1020

    Article  CAS  PubMed  Google Scholar 

  27. Shi Q, Zhang BY, Gao C, Zhang J, Jiang HY, Chen C, Han J, Dong XP (2012) Mouse-adapted scrapie strains 139A and ME7 overcome species barrier to induce experimental scrapie in hamsters and changed their pathogenic features. Virol J 9:63

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gao JM, Zhou XB, Xiao XL, Zhang J, Chen L, Gao C, Zhang BY, Dong XP (2006) Influence of guanidine on proteinase K resistance in vitro and infectivity of scrapie prion protein PrP (Sc). Acta Virol 50(1):25–32

    CAS  PubMed  Google Scholar 

  29. Lund C, Olsen CM, Tveit H, Tranulis MA (2007) Characterization of the prion protein 3F4 epitope and its use as a molecular tag. J Neurosci Methods 165(2):183–190

    Article  CAS  PubMed  Google Scholar 

  30. Endres K, Mitteregger G, Kojro E, Kretzschmar H, Fahrenholz F (2009) Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol Dis 36(2):233–241

    Article  CAS  PubMed  Google Scholar 

  31. Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B, Saftig P, Glatzel M (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 6:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Marcello E, Saraceno C, Musardo S, Vara H, de la Fuente AG, Pelucchi S, Di Marino D, Borroni B, Tramontano A, Perez-Otano I, Padovani A, Giustetto M, Gardoni F, Di Luca M (2013) Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J Clin Invest 123(6):2523–2538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Marcello E, Gardoni F, Mauceri D, Romorini S, Jeromin A, Epis R, Borroni B, Cattabeni F, Sala C, Padovani A, Di Luca M (2007) Synapse-associated protein-97 mediates alpha-secretase ADAM10 trafficking and promotes its activity. J Neurosci 27(7):1682–1691

    Article  CAS  PubMed  Google Scholar 

  34. Anders A, Gilbert S, Garten W, Postina R, Fahrenholz F (2001) Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. FASEB J 15(10):1837–1839

    CAS  PubMed  Google Scholar 

  35. Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87(14):5578–5582

    Article  PubMed Central  PubMed  Google Scholar 

  36. Grams F, Huber R, Kress LF, Moroder L, Bode W (1993) Activation of snake venom metalloproteinases by a cysteine switch-like mechanism. FEBS Lett 335(1):76–80

    Article  CAS  PubMed  Google Scholar 

  37. Laffont-Proust I, Faucheux BA, Hassig R, Sazdovitch V, Simon S, Grassi J, Hauw JJ, Moya KL, Haik S (2005) The N-terminal cleavage of cellular prion protein in the human brain. FEBS Lett 579(28):6333–6337

    Article  CAS  PubMed  Google Scholar 

  38. Cisse MA, Gandreuil C, Hernandez JF, Martinez J, Checler F, Vincent B (2006) Design and characterization of a novel cellular prion-derived quenched fluorimetric substrate of alpha-secretase. Biochem Biophys Res Commun 347(1):254–260

    Article  CAS  PubMed  Google Scholar 

  39. Xiang W, Windl O, Westner IM, Neumann M, Zerr I, Lederer RM, Kretzschmar HA (2005) Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 58(2):242–257

    Article  CAS  PubMed  Google Scholar 

  40. Tian C, Liu D, Sun QL, Chen C, Xu Y, Wang H, Xiang W, Kretzschmar HA, Li W, Shi Q, Gao C, Zhang J, Zhang BY, Han J, Dong XP (2013) Comparative analysis of gene expression profiles between cortex and thalamus in Chinese fatal familial insomnia patients. Mol Neurobiol. doi:10.1007/s12035-013-8426-6

    Google Scholar 

  41. Tian C, Liu D, Chen C, Xu Y, Gong HS, Shi Q, Zhang BY, Han J, Dong XP (2013) Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med 31(3):676–688

    CAS  PubMed  Google Scholar 

  42. Chen C, Xiao D, Zhou W, Shi Q, Zhang HF, Zhang J, Tian C, Zhang JZ, Dong XP (2013) Global protein differential expression profiling of cerebrospinal fluid samples pooled from Chinese sporadic CJD and non-CJD Patients. Mol Neurobiol. doi:10.1007/s12035-013-8519-2

    Google Scholar 

  43. Liang J, Wang W, Sorensen D, Medina S, Ilchenko S, Kiselar J, Surewicz WK, Booth SA, Kong Q (2012) Cellular prion protein regulates its own alpha-cleavage through ADAM8 in skeletal muscle. J Biol Chem 287(20):16510–16520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the China Mega-Project for Infectious Disease (2011ZX10004-101, 2012ZX10004215), Chinese National Natural Science Foundation Grants (81100980), Young Scholar Scientific Research Foundation of China CDC (2012A102), and the SKLID Development Grant (2012SKLID102, 2011SKLID104 and 2011SKLID211).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Lv, Y., Zhang, BY. et al. Apparent Reduction of ADAM10 in Scrapie-Infected Cultured Cells and in the Brains of Scrapie-Infected Rodents. Mol Neurobiol 50, 875–887 (2014). https://doi.org/10.1007/s12035-014-8708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8708-7

Keywords

Navigation