Skip to main content
Log in

Proteasome Inhibition-Induced Downregulation of Akt/GSK-3β Pathway Contributes to Abnormality of Tau in Hippocampal Slice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Proteasome inhibition can induce abnormal accumulation and phosphorylation of microtubule-associated protein tau. The major function of tau protein is to promote microtubules assembly and stabilization, and abnormal tau protein would disturb its microtubule-binding function. In this study, proteasome inhibitor MG132 was used to treat hippocampal slices to explore the role and mechanism of Akt/glycogen synthase kinase-3β (GSK-3β) in proteasome inhibition-induced tau abnormality. During the culture period, we measure the lactate dehydrogenase (LDH) content to assay the viability of hippocampal slices. Following 2.5 and 5 μM MG132 treatment for 6 h, we detected the expression, phosphorylation modification, and microtubule-binding function of tau protein of slices. We also analyzed the changed activities of glycogen synthase kinase-3β (GSK-3β) and protein kinase B (PKB/Akt) and the level of heat shock protein 90 (Hsp90) in the process. In addition, co-immunoprecipitation was used to investigate the interaction between Akt and Hsp90, Akt and protein phosphatase-2A (PP2A) in the MG132-treated organotypic hippocampal slices. Our results indicated that proteasome inhibition led to degradation obstacles and abnormal phosphorylation of tau protein. The downregulated Akt/GSK-3β signaling pathway might be responsible for the abnormal phosphorylation of tau protein at multiple sites which further reduced the microtubule-binding function of tau protein. Furthermore, proteasome inhibition decreased the binding capacity of Akt-Hsp90 while increased the Akt-PP2A binding ability which mediated Akt inactivity. This current study establishes a hippocampal slice model targeting Akt/GSK-3β signaling pathway to explore the pivotal role of proteasome inhibition in tau pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247. doi:10.1101/cshperspect. a006247

    Article  PubMed Central  PubMed  Google Scholar 

  2. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159. doi:10.1016/j.tins.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  3. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91:5562–5566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305

    CAS  PubMed  Google Scholar 

  5. Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q (2005) Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 67:141–155. doi:10.1002/jemt.20187

    Article  CAS  PubMed  Google Scholar 

  6. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876. doi:10.1074/jbc. M305838200

    Article  CAS  PubMed  Google Scholar 

  8. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235:1641–1644

    Article  CAS  PubMed  Google Scholar 

  9. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281:10825–10838. doi:10.1074/jbc. M512786200

    Article  CAS  PubMed  Google Scholar 

  10. Cuervo AM, Wong ES, Martinez-Vicente M (2010) Protein degradation, aggregation, and misfolding. Mov Disord 25(Suppl 1):S49–S54. doi:10.1002/mds.22718

    Article  PubMed  Google Scholar 

  11. Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34:1461–1474. doi:10.1016/S1357-2725(02)00085-7

    Article  CAS  PubMed  Google Scholar 

  12. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091. doi:10.1242/jcs.019265

    Article  CAS  PubMed  Google Scholar 

  13. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28:6926–6937. doi:10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170. doi:10.1093/hmg/ddp367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ren QG, Liao XM, Wang ZF, Qu ZS, Wang JZ (2006) The involvement of glycogen synthase kinase-3 and protein phosphatase-2A in lactacystin-induced tau accumulation. FEBS Lett 580:2503–2511. doi:10.1016/j.febslet.2006.03.073

    Article  CAS  PubMed  Google Scholar 

  16. Liu YH, Wei W, Yin J, Liu GP, Wang Q, Cao FY, Wang JZ (2009) Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging 30:1949–1961. doi:10.1016/j. neurobiolaging.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  17. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38:3549–3558. doi:10.1021/bi981874p

    Article  CAS  PubMed  Google Scholar 

  18. Ksiezak-Reding H, Pyo HK, Feinstein B, Pasinetti GM (2003) Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys Acta 1639:159–168. doi:10.1016/j.bbadis.2003.09.001

    CAS  Google Scholar 

  19. Kyoung Pyo H, Lovati E, Pasinetti GM, Ksiezak-Reding H (2004) Phosphorylation of tau at THR212 and SER214 in human neuronal and glial cultures: the role of AKT. Neuroscience 127:649–658. doi:10.1016/j.neuroscience.2004.05.036

    Article  CAS  PubMed  Google Scholar 

  20. Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62. doi:10.1016/S0959-437X(98)80062-2

    Article  CAS  PubMed  Google Scholar 

  21. Suizu F, Hiramuki Y, Okumura F, Matsuda M, Okumura AJ, Hirata N, Narita M, Kohno T, Yokota J, Bohgaki M, Obuse C, Hatakeyama S, Obata T, Noguchi M (2009) The E3 ligase TTC3 facilitates ubiquitination and degradation of phosphorylated Akt. Dev Cell 17:800–810. doi:10.1016/j.devcel. 2009.09.007

    Article  CAS  PubMed  Google Scholar 

  22. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, Hur L, Grabiner BC, Lin X, Darnay BG, Lin HK (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325:1134–1138. doi:10.1126/science.1175065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789. doi:10.1038/ 378785a0

    Article  CAS  PubMed  Google Scholar 

  24. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 96:10403–10408. doi:10.1073/pnas.96.18.10403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Noraberg J, Poulsen FR, Blaabjerg M, Kristensen BW, Bonde C, Montero M, Meyer M, Gramsbergen JB, Zimmer J (2005) Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr. Drug Targets CNS. Neurol Disord 4:435–452

    CAS  Google Scholar 

  26. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182. doi:10.1016/0165-0270(91)90128-M

    Article  CAS  PubMed  Google Scholar 

  27. Tzivion G, Shen YH, Zhu J (2001) 14-3-3 proteins: bringing new definitions to scaffolding. Oncogene 20:6331–6338

    Article  CAS  PubMed  Google Scholar 

  28. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998) Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol 143:777–794. doi:10.1083/jcb.143.3. 777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16:57275740

    Google Scholar 

  30. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97:10832–10837. doi:10.1073/pnas.170276797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gähwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM (1997) Organotypic slice cultures: a technique has come of age. Trends Neurosci 20:471–477. doi:10.1016/S0166-2236(97) 01122-3

    Article  PubMed  Google Scholar 

  32. Lossi L, Alasia S, Salio C, Merighi A (2009) Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 88:221–245. doi:10.1016/j.pneurobio. 2009.01.002

    Article  PubMed  Google Scholar 

  33. Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  34. Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci. doi:10.1016/j.tins.2008.11.007

  35. Ittner LM, Fath T, Ke YD, Bi M, van Eersel J, Li KM, Gunning P, Götz J (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci U S A 105:15997–16002. doi:10.1073/pnas.0808084105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46. doi:10.1006/exnr.2002.8050

    Article  CAS  PubMed  Google Scholar 

  37. Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88:349–358. doi:10.1111/j.1471-4159.2004.02155.x

    Article  CAS  PubMed  Google Scholar 

  38. Rankin CA, Sun Q, Gamblin TC (2005) Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Mol Brain Res 138:84–93. doi:10.1016/j.molbrainres.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  39. Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T, Takeda M (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108:33–43. doi:10.1111/j.1471-4159.2008.05716.x

    Article  CAS  PubMed  Google Scholar 

  40. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102. doi:10.1016/j.tibs.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  41. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hahn JS (2009) The Hsp90 chaperone machinery: from structure to drug development. BMB Rep 42:623–630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Wang Jianzhi at Tongji Medical College of Huazhong University of Sciences and Technology, Wuhan, China, for providing R134d used in this study. This work was supported by grants from the National Natural Science Foundation of China (No. 30700208, No. 30800329, and No. 31172102).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomei Liao.

Additional information

Min Xie, Ruihong Shi and Ying Pan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effect of lactacystin induced proteasome inhibition on tau-Ser214 site phosphorylation in HEK293/tau441 cell line. The phosphorylation-dependent antibody pSer214 was used to measure the alteration of tau-Ser214 site, following lactacystin treatment for 24 h, the relative level of pS214 decreased in a dose-dependent manner. The results are expressed as the mean ± SD (n = 3); **p < 0.01, ***p < 0.001, lactacystin vs. controls. (GIF 45 kb)

High resolution image (TIFF 24834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Shi, R., Pan, Y. et al. Proteasome Inhibition-Induced Downregulation of Akt/GSK-3β Pathway Contributes to Abnormality of Tau in Hippocampal Slice. Mol Neurobiol 50, 888–895 (2014). https://doi.org/10.1007/s12035-014-8702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8702-0

Keywords

Navigation