Skip to main content
Log in

GSK3β Promotes the Differentiation of Oligodendrocyte Precursor Cells via β-Catenin-Mediated Transcriptional Regulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Oligodendrocytes are generated by the differentiation and maturation of oligodendrocyte precursor cells (OPCs). The failure of OPC differentiation is a major cause of demyelinating diseases; thus, identifying the molecular mechanisms that affect OPC differentiation is critical for understanding the myelination process and repairing after demyelination. Although prevailing evidence shows that OPC differentiation is a highly coordinated process controlled by multiple extrinsic and intrinsic factors, such as growth factors, axon signals, and transcription factors, the intracellular signaling in OPC differentiation is still unclear. Here, we showed that glycogen synthase kinase 3β (GSK3β) is an essential positive modulator of OPC differentiation. Both pharmacologic inhibition and knockdown of GSK3β remarkably suppressed OPC differentiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assays and Ki67 staining showed that the effect of GSK3β on OPC differentiation was not via cell death. Conversely, activated GSK3β was sufficient to promote OPC differentiation. Our results also demonstrated that the transcription of myelin genes was regulated by GSK3β inhibition, accompanying accumulated nuclear β-catenin, and reduced the expression of transcriptional factors that are relevant to the expression of myelin genes. Taken together, our study identified GSK3β as a profound positive regulator of OPC differentiation, suggesting that GSK3β may contribute to the inefficient regeneration of oligodendrocytes and myelin repair after demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782

    Article  PubMed  CAS  Google Scholar 

  2. Huang H, Zhao XF, Zheng K et al (2013) Regulation of the timing of oligodendrocyte differentiation: mechanisms and perspectives. Neurosci Bull 29:155–164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Wolswijk G (2000) Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123(Pt 1):105–115

    Article  PubMed  Google Scholar 

  4. Chang A, Nishiyama A, Peterson J et al (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    PubMed  CAS  Google Scholar 

  5. Chang A, Tourtellotte WW, Rudick R et al (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165–173

    Article  PubMed  Google Scholar 

  6. Billiards SS, Haynes RL, Folkerth RD et al (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18:153–163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boespflug-Tanguy O, Labauge P, Fogli A et al (2008) Genes involved in leukodystrophies: a glance at glial functions. Curr Neurol Neurosci Rep 8:217–229

    Article  PubMed  CAS  Google Scholar 

  8. Segovia KN, McClure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 2468:244–252

    Article  Google Scholar 

  10. Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6:276–287

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467

    Article  PubMed  CAS  Google Scholar 

  12. Wang S, Sdrulla AD, diSibio G et al (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75

    Article  PubMed  Google Scholar 

  13. Charles P, Hernandez MP, Stankoff B et al (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 97:7585–7590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Mi S, Miller RH, Lee X et al (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751

    Article  PubMed  CAS  Google Scholar 

  15. Fu H, Qi Y, Tan M et al (2002) Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development 129:681–693

    PubMed  CAS  Google Scholar 

  16. Arnett HA, Fancy SP, Alberta JA et al (2004) bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111–2115

    Article  PubMed  CAS  Google Scholar 

  17. Battiste J, Helms AW, Kim EJ et al (2007) Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134:285–293

    Article  PubMed  CAS  Google Scholar 

  18. He Y, Dupree J, Wang J et al (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55:217–230

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Liu Z, Hu X, Cai J et al (2007) Induction of oligodendrocyte differentiation by Olig2 and Sox10: evidence for reciprocal interactions and dosage-dependent mechanisms. Dev Biol 302:683–693

    Article  PubMed  CAS  Google Scholar 

  20. Wegner M (2008) A matter of identity: transcriptional control in oligodendrocytes. J Mol Neurosci 35:3–12

    Article  PubMed  CAS  Google Scholar 

  21. Fancy SP, Baranzini SE, Zhao C et al (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23:1571–1585

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Emery B, Agalliu D, Cahoy JD et al (2009) Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–185

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Cai J, Zhu Q, Zheng K et al (2010) Co-localization of Nkx6.2 and Nkx2.2 homeodomain proteins in differentiated myelinating oligodendrocytes. Glia 58:458–468

    PubMed  PubMed Central  Google Scholar 

  24. Ye F, Chen Y, Hoang T et al (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin–TCF interaction. Nat Neurosci 12:829–838

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium. J Neurochem 78:1219–1232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369

    Article  PubMed  CAS  Google Scholar 

  27. Machold R, Hayashi S, Rutlin M et al (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  PubMed  CAS  Google Scholar 

  28. Cohen P, Goedert M (2004) GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3:479–487

    Article  PubMed  CAS  Google Scholar 

  29. Frederick TJ, Min J, Altieri SC et al (2007) Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 55:1011–1022

    Article  PubMed  Google Scholar 

  30. Iwata T, Hevner RF (2009) Fibroblast growth factor signaling in development of the cerebral cortex. Dev Growth Differ 51:299–323

    Article  PubMed  CAS  Google Scholar 

  31. Yoon K, Gaiano N (2005) Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8:709–715

    Article  PubMed  CAS  Google Scholar 

  32. Kim WY, Wang X, Wu Y et al (2009) GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 12:1390–1397

    Article  PubMed  CAS  Google Scholar 

  33. Corbin JG, Gaiano N, Juliano SL et al (2008) Regulation of neural progenitor cell development in the nervous system. J Neurochem 106:2272–2287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Hur EM, Zhou FQ (2010) GSK3 signaling in neural development. Nat Rev Neurosci 11:539–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Ye P, Hu Q, Liu H et al (2010) Beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia 58:1031–1041

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aberle H, Bauer A, Stappert J et al (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. de Groot RP, Auwerx J, Bourouis M et al (1993) Negative regulation of Jun/AP-1: conserved function of glycogen synthase kinase 3 and the Drosophila kinase shaggy. Oncogene 8:841–847

    PubMed  Google Scholar 

  38. Beals CR, Sheridan CM, Turck CW et al (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275:1930–1934

    Article  PubMed  CAS  Google Scholar 

  39. Neal JW, Clipstone NA (2001) Glycogen synthase kinase −3 inhibits the DNA binding activity of NFATc. J Biol Chem 276:3666–3673

    Article  PubMed  CAS  Google Scholar 

  40. Fuentealba LC, Eivers E, Ikeda A et al (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–993

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Ma YC, Song MR, Park JP et al (2008) Regulation of motor neuron specification by phosphorylation of neurogenin 2. Neuron 58:65–77

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Takahashi M, Tomizawa K, Kato R et al (1994) Localization and developmental changes of tau protein kinase I/glycogen synthase kinase-3 beta in rat brain. J Neurochem 63:245–255

    Article  PubMed  CAS  Google Scholar 

  43. Coyle-Rink J, Del Valle L, Sweet T et al (2002) Developmental expression of Wnt signaling factors in mouse brain. Cancer Biol Ther 1:640–645

    Article  PubMed  CAS  Google Scholar 

  44. Yang Z, Watanabe M, Nishiyama A (2005) Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J Neurosci Methods 149:50–56

    Article  PubMed  CAS  Google Scholar 

  45. Hu JG, Fu SL, Wang YX et al (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151:138–147

    Article  PubMed  CAS  Google Scholar 

  46. Li C, Xiao L, Liu X et al (2013) A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61:732–749

    Article  PubMed  Google Scholar 

  47. Zhu J, Shao CY, Yang W et al (2012) Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons. PLoS ONE 7:e46012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Shao CY, Zhu J, Xie YJ et al (2013) Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport. Traffic 14:785–797

    Article  PubMed  CAS  Google Scholar 

  49. Shaw M, Cohen P, Alessi DR (1997) Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Lett 416:307–311

    Article  PubMed  CAS  Google Scholar 

  50. Castano Z, Gordon-Weeks PR, Kypta RM (2010) The neuron-specific isoform of glycogen synthase kinase-3β is required for axon growth. J Neurochem 113:117–130

    Article  PubMed  Google Scholar 

  51. Ragot K, Delmas D, Athias A et al (2011) α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158 N murine oligodendrocytes. Chem Phys Lipids 164:469–478

    Article  PubMed  CAS  Google Scholar 

  52. Bhat R, Xue Y, Berg S et al (2003) Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 278:45937–45945

    Article  PubMed  CAS  Google Scholar 

  53. Lalor PA, Mapp PI, Hall PA et al (1987) Proliferative activity of cells in the synovium as demonstrated by a monoclonal antibody, Ki67. Rheumatol Int 7:183–186

    Article  PubMed  CAS  Google Scholar 

  54. Chen G, Bower KA, Ma C et al (2004) Glycogen synthase kinase 3β (GSK3β) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18:1162–1164

    Article  PubMed  CAS  Google Scholar 

  55. Azim K, Butt AM (2011) GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59:540–553

    Article  PubMed  Google Scholar 

  56. Jiang H, Guo W, Liang X et al (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120:123–135

    PubMed  CAS  Google Scholar 

  57. Temple S, Raff MC (1986) Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44:773–779

    Article  PubMed  CAS  Google Scholar 

  58. Weng Q, Chen Y, Wang H et al (2012) Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73:713–728

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Fu H, Cai J, Clevers H et al (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 29:11399–11408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Kondo T, Raff M (2004) Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 18:2963–2972

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Stolt CC, Schlierf A, Lommes P et al (2006) SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell 11:697–709

    Article  PubMed  CAS  Google Scholar 

  62. Mukai F, Ishiguro K, Sano Y et al (2002) Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3β. J Neurochem 81:1073–1083

    Article  PubMed  CAS  Google Scholar 

  63. Fancy SP, Harrington EP, Yuen TJ et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Behrens J, Jerchow BA, Würtele M et al (1988) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280:596–599

    Article  Google Scholar 

  65. Jho EH, Zhang T, Domon C et al (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Lustig B, Jerchow B, Sachs M et al (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22:1184–1193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Cross DA, Alessi DR, Cohen P et al (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  68. Thornton TM, Pedraza-Alva G, Deng B et al (2008) Phosphorylation by p38 MAPK as an alternative pathway for GSK3β inactivation. Science 320:667–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yi Rao (Beijing University, Beijing, China) for kindly providing the GSK3β-S9A plasmid. We are grateful for the helpful advice from the members of the Shen lab. We thank Dr. Iain C. Bruce for his help during the preparation of the manuscript. This work was supported by grants from the National Basic Research Program (973) of the Ministry of Science and Technology of China (2009CB941400, 2011CB504400, and 2013CB531300), the National Foundation of Natural Science of China (31260243, 31200818,31271148, 31060140, 31071879), the Zhejiang Provincial Foundation of Natural Science (LY12C09002), the Program for New Century Excellent Talents in University from the Ministry of Education of China for Ying Shen (NCET-07-0751) and Yin Wang, and the Fundament Research Funds for the Central University (2011FZA7002 and 2013QNA7007).

Conflict of Interest

All authors indicate that they do not have the financial relationship with the organizations that sponsored the current research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yin Wang, Mengsheng Qiu or Ying Shen.

Additional information

Liang Zhou and Chong-Yu Shao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Effects of AR-A on OPC differentiation are not mediated by T3. (A) Representative images of OLs stained with antibodies to MBP (red) and Olig2 (green) in the control (Ctrl) and AR-A groups. Cells were exposed to AR-A for 7 days without T3. Scale bar: 40 μm. (B) The percentages of MBP+ OLs in Olig2+ cells were 49 ± 3 % (Ctrl) and 23 ± 2 % (AR-A). (GIF 196 kb)

High resolution image (TIFF 1692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Shao, CY., Xu, Sm. et al. GSK3β Promotes the Differentiation of Oligodendrocyte Precursor Cells via β-Catenin-Mediated Transcriptional Regulation. Mol Neurobiol 50, 507–519 (2014). https://doi.org/10.1007/s12035-014-8678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8678-9

Keywords

Navigation