Skip to main content

Advertisement

Log in

Upregulation of HIF-1α Via Activation of ERK and PI3K Pathway Mediated Protective Response to Microwave-Induced Mitochondrial Injury in Neuron-Like Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm2 microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain injury. The journal of maternal-fetal & neonatal medicine: the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies. Int Soc Perinatal Obstet 25(Suppl 1):30–34. doi:10.3109/14767058.2012.663176

    CAS  Google Scholar 

  2. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD (2012) Radiation-induced brain injury: a review. Front Oncol 2:73. doi:10.3389/fonc.2012.00073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Acsadi G, Lee I, Li X, Khaidakov M, Pecinova A, Parker GC, Huttemann M (2009) Mitochondrial dysfunction in a neural cell model of spinal muscular atrophy. J Neurosci Res 87(12):2748–2756. doi:10.1002/jnr.22106

    Article  CAS  PubMed  Google Scholar 

  4. Srivastava S, Kashiwaya Y, Chen X, Geiger JD, Pawlosky R, Veech RL (2012) Microwave irradiation decreases ATP, increases free [Mg(2)(+)], and alters in vivo intracellular reactions in rat brain. J Neurochem 123(5):668–675. doi:10.1111/jnc.12026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhao L, Peng RY, Wang SM, Wang LF, Gao YB, Dong J, Li X, Su ZT (2012) Relationship between cognition function and hippocampus structure after long-term microwave exposure. Biomed Environ Sci: BES 25(2):182–188. doi:10.3967/0895-3988.2012.02.009

    PubMed  Google Scholar 

  6. Sueoka E, Sueoka-Aragane N, Sato A, Ide M, Nakamura H, Sotomaru Y, Taya C, Yonekawa H, Kitagawa T, Kubota Y, Kimura S, Nakachi K, Tanimoto K (2013) Development of lymphoproliferative diseases by hypoxia inducible factor-1alpha is associated with prolonged lymphocyte survival. PLoS One 8(4):e57833. doi:10.1371/journal.pone.0057833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gruber M, Simon MC (2006) Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol 13(3):169–174. doi:10.1097/01.moh.0000219663.88409.35

    Article  CAS  PubMed  Google Scholar 

  8. Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F (2009) The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 62(1):99–108. doi:10.1016/j.brainresrev.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Tomita S, Kihira Y, Imanishi M, Fukuhara Y, Imamura Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T (2011) Pathophysiological response to hypoxia—from the molecular mechanisms of malady to drug discovery: inflammatory responses of hypoxia-inducible factor 1alpha (HIF-1alpha) in T cells observed in development of vascular remodeling. J Pharmacol Sci 115(4):433–439

    Article  CAS  PubMed  Google Scholar 

  10. Singh N, Sharma G, Mishra V (2012) Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 32(4):491–507. doi:10.1007/s10571-012-9803-9

    Article  CAS  PubMed  Google Scholar 

  11. Rey S, Luo W, Shimoda LA, Semenza GL (2011) Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood 117(18):4988–4998. doi:10.1182/blood-2010-11-321190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li Y, Xia ZL, Chen LB (2011) HIF-1-alpha and survivin involved in the anti-apoptotic effect of 2ME2 after global ischemia in rats. Neurol Res 33(6):583–592. doi:10.1179/1743132810Y.0000000013

    Article  CAS  PubMed  Google Scholar 

  13. Chandel NS (2010) Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol 661:339–354. doi:10.1007/978-1-60761-500-2_22

    Article  CAS  PubMed  Google Scholar 

  14. Ball KA, Nelson AW, Foster DG, Poyton RO (2012) Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1alpha in hypoxic mammalian cells. Biochem Biophys Res Commun 420(4):727–732. doi:10.1016/j.bbrc.2012.03.050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM, McMurtry MS, Michelakis ED (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32(13):1638–1650. doi:10.1038/onc.2012.198

    Article  CAS  PubMed  Google Scholar 

  16. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405(1):1–9. doi:10.1042/BJ20070389

    CAS  PubMed  Google Scholar 

  17. Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta 1813(7):1263–1268. doi:10.1016/j.bbamcr.2010.08.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T, Gorlach A (2007) Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18(12):4691–4697. doi:10.1091/mbc.E07-04-0391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang QL, Cui BR, Li HY, Li P, Hong L, Liu LP, Ding DZ, Cui X (2013) MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem Biophys Res Commun 438(3):507–512. doi:10.1016/j.bbrc.2013.07.106

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Xiong Y, Qu Y, Mao M, Mu W, Wang H, Mu D (2008) The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor 1 alpha in the developing rat brain after hypoxia-ischemia. Acta Neuropathol 115(3):297–303. doi:10.1007/s00401-008-0339-5

    Article  CAS  PubMed  Google Scholar 

  21. Ye Z, Guo Q, Xia P, Wang N, Wang E, Yuan Y (2012) Sevoflurane postconditioning involves an up-regulation of HIF-1alpha and HO-1 expression via PI3K/Akt pathway in a rat model of focal cerebral ischemia. Brain Res 1463:63–74. doi:10.1016/j.brainres.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  22. Jeong YJ, Cho HJ, Magae J, Lee IK, Park KG, Chang YC (2013) Ascofuranone suppresses EGF-induced HIF-1alpha protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2013.09.027

  23. Jiajun Xu ZP, Li R, Dou T, Weigang X, Guojun G, Liu Y, Kang Z, Tao H, Zhang JH, Ostrowski RP, Jian L, Sun X (2009) Normoxic induction of cerebral HIF-1α by acetazolamide in rats: role of acidosis. Neurosci Lett 451:274–278

    Article  PubMed  Google Scholar 

  24. Nedden BT S z, Gabriele B-B (2008) HIF-1 alpha is an essential effector for purine nucleoside-mediated neuroprotection against hypoxia in PC12 cells and primary cerebellar granule neurons. J Neurochem 105(5):1901–1904

    Article  Google Scholar 

  25. Juan C, Chavez JCL (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22(20):8922–8931

    Google Scholar 

  26. Chu WLM, Li F, Hu R, Chen Z, Lin J, Feng H (2013) Immediate splenectomy down-regulates the MAPK-NF-κB signaling pathway in rat brain after severe traumatic brain injury. J Trauma Acute Care Surg 74(6):1446–1453

    Article  CAS  PubMed  Google Scholar 

  27. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274(46):32631–32637

    Article  CAS  PubMed  Google Scholar 

  28. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1(6):409–414. doi:10.1016/j.cmet.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L, Yong Z, Zuo H, Zhao L, Dong J, Xu X, Su Z (2013) Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol. doi:10.3109/09553002.2013.817701

  30. Orendacova J, Orendac M, Racekova E, Marsala J (2007) Neurobiological effects of microwave exposure: a review focused on morphological findings in experimental animals. Arch Ital Biol 145(1):1–12

    CAS  PubMed  Google Scholar 

  31. Nittby H, Grafstrom G, Tian DP, Malmgren L, Brun A, Persson BR, Salford LG, Eberhardt J (2008) Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics 29(3):219–232. doi:10.1002/bem.20386

    Article  PubMed  Google Scholar 

  32. Correia SC, Carvalho C, Cardoso S, Santos RX, Santos MS, Oliveira CR, Perry G, Zhu X, Smith MA, Moreira PI (2010) Mitochondrial preconditioning: a potential neuroprotective strategy. Front Aging Neurosci 2. doi:10.3389/fnagi.2010.00138

  33. Dirnagl U, Becker K, Meisel A (2009) Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol 8(4):398–412. doi:10.1016/S1474-4422(09)70054-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dirnagl U, Meisel A (2008) Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning? Neuropharmacology 55(3):334–344. doi:10.1016/j.neuropharm.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  35. Ravati A, Ahlemeyer B, Becker A, Klumpp S, Krieglstein J (2001) Preconditioning-induced neuroprotection is mediated by reactive oxygen species and activation of the transcription factor nuclear factor-kappaB. J Neurochem 78(4):909–919

    Article  CAS  PubMed  Google Scholar 

  36. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS (2007) The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol 177(6):1029–1036. doi:10.1083/jcb.200609074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Zepeda AB, Pessoa A Jr, Castillo RL, Figueroa CA, Pulgar VM, Farias JG (2013) Cellular and molecular mechanisms in the hypoxic tissue: role of HIF-1 and ROS. Cell Biochem Funct 31(6):451–459. doi:10.1002/cbf.2985

    Article  CAS  PubMed  Google Scholar 

  38. Hamanaka RB, Chandel NS (2009) Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr Opin Cell Biol 21(6):894–899. doi:10.1016/j.ceb.2009.08.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Khromova NV, Kopnin PB, Stepanova EV, Agapova LS, Kopnin BP (2009) p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett 276(2):143–151. doi:10.1016/j.canlet.2008.10.049

    Article  CAS  PubMed  Google Scholar 

  40. Pawlus MR, Wang L, Hu CJ (2013) STAT3 and HIF1alpha cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells. Oncogene. doi:10.1038/onc.2013.115

  41. Liu M, Li D, Aneja R, Joshi HC, Xie S, Zhang C, Zhou J (2007) PO(2)-dependent differential regulation of multidrug resistance 1 gene expression by the c-Jun NH2-terminal kinase pathway. J Biol Chem 282(24):17581–17586. doi:10.1074/jbc.M702206200

    Article  CAS  PubMed  Google Scholar 

  42. Minet E, Arnould T, Michel G, Roland I, Mottet D, Raes M, Remacle J, Michiels C (2000) ERK activation upon hypoxia: involvement in HIF-1 activation. FEBS Lett 468(1):53–58

    Article  CAS  PubMed  Google Scholar 

  43. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 12(7):363–369

    CAS  Google Scholar 

  44. Zhou L, Miller CA (2006) Mitogen-activated protein kinase signaling, oxygen sensors and hypoxic induction of neurogenesis. Neurodegener Dis 3(1–2):50–55. doi:10.1159/000092093

    Article  CAS  PubMed  Google Scholar 

  45. Agani F, Jiang BH (2013) Oxygen-independent regulation of HIF-1: novel involvement of PI3K/ AKT/mTOR pathway in cancer. Curr Cancer Drug Targets 13(3):245–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81372926) and Natural Science Foundation of Beijing (No. 7122127).

Competing Interests

The author(s) declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Yun Peng.

Additional information

Li Zhao and Yue-Feng Yang contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Yang, YF., Gao, YB. et al. Upregulation of HIF-1α Via Activation of ERK and PI3K Pathway Mediated Protective Response to Microwave-Induced Mitochondrial Injury in Neuron-Like Cells. Mol Neurobiol 50, 1024–1034 (2014). https://doi.org/10.1007/s12035-014-8667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8667-z

Keywords

Navigation