Skip to main content

Advertisement

Log in

SNAP25 Ameliorates Sensory Deficit in Rats with Spinal Cord Transection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury causes sensory loss below the level of lesion. Synaptosomal-associated protein 25 (SNAP25) is a t-SNARE protein essential for exocytosis and neurotransmitter release, but its role in sensory functional recovery has not been determined. The aim of the present study is therefore to investigate whether SNAP25 can promote sensory recovery. By 2D proteomics, we found a downregulation of SNAP25 and then constructed two lentiviral vectors, Lv-exSNAP25 and Lv-shSNAP25, which allows efficient and stable RNAi-mediated silencing of endogenous SNAP25. Overexpression of SNAP25 enhanced neurite outgrowth in vitro and behavior response to thermal and mechanical stimuli in vivo, while the silencing of SNAP25 had the opposite effect. These results suggest that SNAP25 plays a crucial role in sensory functional recovery following spinal cord injury (SCI). Our study therefore provides a novel target for the management of SCI for sensory dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hulsebosch CE, Hains BC, Crown ED, Carlton SM (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60(1):202–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Richards JS, Meredith RL, Nepomuceno C, Fine PR, Bennett G (1980) Psycho-social aspects of chronic pain in spinal cord injury. Pain 8:355–366

    Article  PubMed  CAS  Google Scholar 

  3. Hoschouer EL, Finseth T, Flinn S, Basso DM, Jakeman LB (2010) Sensory stimulation prior to spinal cord injury induces post-injury dysesthesia in mice. J Neurotrauma 27(5):777–787

    Article  PubMed  PubMed Central  Google Scholar 

  4. Westgren N, Levi R (1998) Quality of life and traumatic spinal cord injury. Arch Phys Med Rehabil 79:1433–1439

    Article  PubMed  CAS  Google Scholar 

  5. Jensen MP, Hoffman AJ, Cardenas DD (2005) Chronic pain in individuals with spinal cord injury: a survey and longitudinal study. Spinal Cord 43:704–712

    Article  PubMed  CAS  Google Scholar 

  6. Störmer S, Gerner HJ, Grüninger W, Metzmacher K, Föllinger S, Wienke C, Aldinger W, Walker N, Zimmermann M, Paeslack V (1997) Chronic pain/dysaesthesiae in spinal cord injury patients: results of a multicentre study. Spinal Cord 35(7):446–455

    Article  PubMed  Google Scholar 

  7. Crossman MW (1996) Sensory deprivation in spinal cord injury—an essay. Spinal Cord 34(10):573–577

    Article  PubMed  CAS  Google Scholar 

  8. Richards JS, Hirt M, Melamed L (1982) Spinal cord injury: a sensory restriction perspective. Arch Phys Med Rehabil 63(5):195–199

    PubMed  CAS  Google Scholar 

  9. Krishnan KR, Glass CA, Turner SM, Watt JW, Fraser MH (1992) Perceptual deprivation in the acute phase of spinal injury rehabilitation. J Am Paraplegia Soc 15(2):60–65

    PubMed  CAS  Google Scholar 

  10. Balazy TE (1992) Clinical management of chronic pain in spinal cord injury. Clin J Pain 8:102–110

    Article  PubMed  CAS  Google Scholar 

  11. Turner JA, Cardenas DD, Warms CA, McClellan CB (2001) Chronic pain associated with spinal cord injuries: a community survey. Arch Phys Med Rehabil 82:501–509

    Article  PubMed  CAS  Google Scholar 

  12. Chuckowree JA, Dickson TC, Vickers JC (2004) Intrinsic regenerative ability of mature CNS neurons. Neuroscientist 10:280–285

    Article  PubMed  Google Scholar 

  13. Kruger GM, Morrison SJ (2002) Brain repair by endogenous progenitors. Cell 110(4):399–402

    Article  PubMed  CAS  Google Scholar 

  14. Ding Q, Wu Z, Guo Y, Zhao C, Jia Y, Kong F, Chen B, Wang H, Xiong S, Que H, Jing S, Liu S (2006) Proteome analysis of up-regulated proteins in the rat spinal cord induced by transection injury. Proteomics 6:505–518

    Article  PubMed  CAS  Google Scholar 

  15. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  16. Maglott DR, Feldblyum TV, Durkin AS, Nierman WC (1996) Radiation hybrid mapping of SNAP, PCSK2, and THBD (human chromosome 20p). Mamm Genome 7(5):400–401

    Article  PubMed  CAS  Google Scholar 

  17. Sudhof TC, Rizo J (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3(8):641–653

    PubMed  Google Scholar 

  18. Morihara T, Mizoguchi A, Takahashi M, Kozaki S, Tsujihara T, Kawano S, Shirasu M, Ohmukai T, Kitada M, Kimura K, Okajima S, Tamai K, Hirasawa Y, Ide C (1999) Distribution of synaptosomal-associated protein 25 in nerve growth cones and reduction of neurite outgrowth by botulinum neurotoxin A without altering growth cone morphology in dorsal root ganglion neurons and PC-12 cells. Neuroscience 91:695–706

    Article  PubMed  CAS  Google Scholar 

  19. Aikawa Y, Xia X, Martin TF (2006) SNAP25, but not syntaxin 1A, recycles via an ARF6-regulated pathway in neuroendocrine cells. Mol Biol Cell 17(2):711–722

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Osen SA, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448

    Article  Google Scholar 

  21. Osen SA, Staple JK, Naldi E, Schiavo G, Rossetto O, Petitpierre S, Malgaroli A, Montecucco C, Catsicas S (1996) Common and distinct fusion proteins in axonal growth and transmitter release. J Comput Neurol 367:222–234

    Article  Google Scholar 

  22. Wu CS, Lin JT, Chien CL, Chang WC, Lai HL, Chang CP, Chern Y (2011) Type VI Adenylyl Cyclase regulates neurite extension by binding to Snapin and Snap25. Mol Cellularbiol 31(24):4874–4886

    CAS  Google Scholar 

  23. Zhang YQ, Guo N, Peng G, Wang X, Han M, Raincrow J, Chiu CH, Coolen LM, Wenthold RJ, Zhao ZQ, Jing N, Yu L (2009) Role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain. Pain 146(1–2):130–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Peng G, Han M, Du Y, Lin A, Yu L, Zhang Y, Jing N (2009) SIP30 is regulated by ERK in peripheral nerve injury-induced neuropathic pain. J Biol Chem 284(44):30138–30147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Eide K, Jorum E, Stenehjem AE (1996) Somatosensory finding in spinal cord injury patients with central dysesthesia pain. J Neuro Neurosurg Psychiatry 60:411–415

    Article  CAS  Google Scholar 

  26. Margaret O (2011) Cephalad sensory loss as clinical manifestation of charcot spine in spinal cord injury: a case report. PM&R 3(10):325–326

    Google Scholar 

  27. Oni MB, Dajoyag-Mejia MA (2013) Cephalad sensory loss as clinical manifestation of charcot spine in spinal cord injury. Am J Phys Med Rehabil 92(3):280–281

    Article  PubMed  Google Scholar 

  28. Nino HE, Leppik IE, Lai C, Martin S (1978) Progressive sensory loss one year after bullet injury of spinal cord. JAMA 240(11):1173–1174

    Article  PubMed  CAS  Google Scholar 

  29. Onda K, Honda H, Arai H, Uchiyama S (2008) Dissociated sensory loss caused by acupuncture injury to the cervical spinal cord. Brain Nerve 60(10):1187–1190

    PubMed  Google Scholar 

  30. Cristante AF, Barros Filho TE, Marcon RM, Letaif OB, Rocha ID (2012) Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo) 67(10):1219–1224

    Article  Google Scholar 

  31. Becker M, Schindler J, Nothwang HG (2006) Neuroproteomics—the tasks lying ahead. Electrophoresis 27:2819–2829

    Article  PubMed  CAS  Google Scholar 

  32. Marcus K, Schmidt O, Schaefer H, Hamacher M, van Hall A, Meyer HE (2004) Proteomics–application to the brain. Int RevNeurobiol 61:285–311

    Article  Google Scholar 

  33. Borgens RB, Liu-Snyder P (2012) Understanding secondary injury. Q Rev Biol 87(2):89–127

    Article  PubMed  Google Scholar 

  34. Wang Y, Tang BL (2006) SNAREs in neurons—beyond synaptic vesicle exocytosis. Mol Membr Biol 23(5):377–384

    Article  PubMed  Google Scholar 

  35. Graham ME, Washbourne P, Wilson MC, Burgoyne RD (2002) Molecular analysis of SNAP-25 function in exocytosis. Ann N Y Acad Sci 971:210–221

    Article  PubMed  CAS  Google Scholar 

  36. Zamponi GW (2003) Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci 92(2):79–83

    Article  PubMed  CAS  Google Scholar 

  37. Scullin CS, Tafoya LC, Wilson MC, Partridge LD (2012) Presynaptic residual calcium and synaptic facilitation at hippocampal synapses of mice with altered expression of SNAP-25. Brain Res 1431:1–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Nagy G, Milosevic I, Fasshauer D, Müller EM, de Groot BL, Lang T, Wilson MC, Sørensen JB (2005) Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell 16:5675–5685

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis. Nat Rev Mol Cell Biol 3(7):498–508

    Article  PubMed  CAS  Google Scholar 

  40. Garbelli R, Inverardi F, Medici V, Amadeo A, Verderio C, Matteoli M, Frassoni C (2008) Heterogeneous expression of SNAP-25 in rat and human brain. J Comp Neurol 506(3):373–386

    Article  PubMed  CAS  Google Scholar 

  41. Yang HY, Sun CP, Jia XM, Gui L, Zhu DF, Ma WQ (2012) Effect of thyroxine on SNARE complex and synaptotagmin-1 expression in the prefrontal cortex of rats with adult-onset hypothyroidism. J Endocrinol Invest 35(3):312–316

    PubMed  Google Scholar 

  42. Fernández-Montes RD, Blasi J, Busquets J, Montanya E, Nacher (2011) Fibronectin enhances soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein expression in cultured human islets. Pancreas 40(7):1153–1155

    Article  PubMed  Google Scholar 

  43. Wang Y, Dong Y, Song H, Liu Y, Liu M, Yuan Y, Ding F, Gu X, Wang Y (2012) Involvement of gecko SNAP25b in spinal cord regeneration by promoting outgrowth and elongation of neurites. Int J Biochem Cell Biol 44(12):2288–2298

    Article  PubMed  CAS  Google Scholar 

  44. Martinez-Arca S, Coco S, Mainguy G, Schenk U, Alberts P, Bouillé P, Mezzina M, Prochiantz A, Matteoli M, Louvard D, Galli T (2001) A common exocytotic mechanism mediates axonal and dendritic outgrowth. J Neurosci 21:3830–3838

    PubMed  CAS  Google Scholar 

  45. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:773–777

    Article  Google Scholar 

  46. Bark C, Bellinger FP, Kaushal A, Mathews JR, Partridge LD, Wilson MC (2004) Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J Neurosci 24:8796–8805

    Article  PubMed  CAS  Google Scholar 

  47. Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 15(120):2864–2874

    Article  Google Scholar 

  48. Ibrahim Z, Ebenezer G, Christensen JM, Sarhane KA, Hauer P, Cooney DS, Sacks JM, Schneeberger S, Lee WP, Polydefkis M, Brandacher G (2013) Cutaneous collateral axonal sprouting re-innervates the skin component and restores sensation of denervated Swine osteomyocutaneous alloflaps. PLoS One 8(10):1–8

    Article  Google Scholar 

  49. Gordon T, Brushart TM, Chan KM (2008) Augmenting nerve regeneration with electrical stimulation. Neurol Res 30:1012–1022

    Article  PubMed  CAS  Google Scholar 

  50. Henry EW, Chiu TH, Nyilas E, Brushart TM, Dikkes P, Sidman RL (1985) Nerve regeneration through biodegradable polyester tubes. Exp Neurol 90:652–676

    Article  PubMed  CAS  Google Scholar 

  51. Navarro X, Verdú E, Wendelschafer-Crabb G, Kennedy WR (1997) Immunohistochemical study of skin reinnervation by regenerative axons. J Comp Neurol 380:164–174

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Ms Kate Rees in School of Pharmacy and Medical Sciences in University of South Australia for critical reading the manuscript. This research was supported by a grant from the China National Science Foundation (No. 81271358, 81070991).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hua Wang.

Additional information

Wei Wang and Fang Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, F., Liu, J. et al. SNAP25 Ameliorates Sensory Deficit in Rats with Spinal Cord Transection. Mol Neurobiol 50, 290–304 (2014). https://doi.org/10.1007/s12035-014-8642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8642-8

Keywords

Navigation