Molecular Neurobiology

, Volume 49, Issue 3, pp 1338–1349 | Cite as

The Roles of p38 MAPK/MSK1 Signaling Pathway in the Neuroprotection of Hypoxic Postconditioning Against Transient Global Cerebral Ischemia in Adult Rats

  • Pingping Zhu
  • Lixuan Zhan
  • Tingna Zhu
  • Donghai Liang
  • Jiaoyue Hu
  • Weiwen Sun
  • Qinghua Hou
  • Huarong Zhou
  • Baoxing Wu
  • Yanmei Wang
  • En XuEmail author


Postconditioning has regenerated interest as a mechanical intervention against cerebral ischemia/reperfusion injury, but its molecular mechanisms remain unknown. We previously reported that hypoxic postconditioning (HPC) ameliorated neuronal death induced by transient global cerebral ischemia (tGCI) in hippocampal CA1 subregion of adult rats. This study tested the hypothesis that p38-mitogen-activated protein kinase (p38 MAPK)/mitogen- and stress-response kinase 1 (MSK1) signaling pathway plays a role in the HPC-induced neuroprotection. Male Wistar rats were subjected to 10 min ischemia induced by applying the four-vessel occlusion method. HPC with 120 min was applied at 24 h after reperfusion. Immunohistochemistry and Western blot were used to detect the expression of phosphorylation of p38 MAPK and MSK1, as well as cleaved caspase-3. We found that HPC induced a significant increase of phosphorylated p38 MAPK and MSK1 in neurons of hippocampal CA1 region and a significant decrease in glial cells after tGCI as well. Furthermore, HPC attenuated caspase-3 cleavation triggered by tGCI in CA1 region. Moreover, p38 MAPK inhibition by SB203580 significantly decreased the phosphorylation of MSK1, increased cleaved caspase-3 expression, and abolished the neuroprotection of HPC. These findings suggested that p38 MAPK/MSK1 signaling axis contributed to HPC-mediated neuroprotection against tGCI, at least in part, by regulating the activation of caspase-3.


Cerebral ischemia Hypoxic postconditioning Neuroprotection Cleaved caspase-3 p38 MAPK/MSK1 signaling pathway 



This work was supported by the National Natural Science Foundation of China (Grant No. 81371303 and 81100880) and National Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20124423110002). Our sincere thanks go to Peifeng DU (Institute for Standardization of Nuclear Industry) for editing this paper.

Conflict of Interest



  1. 1.
    Leconte C, Tixier E, Freret T, Toutain J, Saulnier R, Boulouard M, Roussel S, Schumann-Bard P, Bernaudin M (2009) Delayed hypoxic postconditoning protects against cerebral ischemia in the mouse. Stroke 40:3349–3355PubMedCrossRefGoogle Scholar
  2. 2.
    Zhan L, Li D, Liang D, Wu B, Zhu P, Wang Y, Sun W, Xu E (2012) Activation of Akt/FoxO and inactivation of MEK/ERK pathways contribute to induction of neuroprotection against transient global cerebral ischemia by delayed hypoxic postconditioning in adult rats. Neuropharmacology 635:873–882CrossRefGoogle Scholar
  3. 3.
    Irving EA, Bamford M (2002) Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrer I, Friguls B, Dalfó E, Planas AM (2003) Early modifications in the expression of mitogen-activated protein kinases (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosporylated substrates following focal cerebral ischemia. Acta Neuropathol 105:425–437PubMedGoogle Scholar
  5. 5.
    Lennmyr F, Karlsson S, Gerwins P, Ata KA, Terént A (2002) Activation of mitogen-activated protein kinases in experimental cerebral ischemia. Acta Neurol Scand 106:333–340PubMedCrossRefGoogle Scholar
  6. 6.
    Zarubin T, Han J (2005) Activation and signaling of the p38 MAP kinase pathway. Cell Res 15:11–18PubMedCrossRefGoogle Scholar
  7. 7.
    Kato N, Matsumoto M, Kogawa M, Atkins GJ, Findlay DM, Fujikawa T, Oda H, Ogata M (2013) Critical role of p38MAPK for regeneration of the sciatic nerve following crush injury in vivo. J Neuroinflammation 10:1PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Deak M, Clifton AD, Lucocq LM, Alessi DR (1998) Mitogen-and stress-activated protein kinase-1(MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Arthur JS, Fong AL, Dwyer JM, Davare M, Reese E, Obrietan K, Impey S (2004) Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J Neurosci 24:4324–4332PubMedCrossRefGoogle Scholar
  10. 10.
    Putignano E, Lonetti G, Cancedda L, Ratto G, Costa M, Maffei L, Pizzorusso T (2007) Developmental downregulation of histone pasttranslational modifications regulates visual cortical plasticity. Neuron 53:747–759PubMedCrossRefGoogle Scholar
  11. 11.
    Karelina K, Hansen KF, Choi YS, DeVries AC, Arthur JS, Obrietan K (2012) MSK1 regulates environmental enrichment-induced hippocampal plasticity and cognitive enhancement. Learn Mem 19:550–560PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Arthur JS (2008) MSK activation and physiological roles. Front Biosci 13:5866–5879PubMedCrossRefGoogle Scholar
  13. 13.
    Nagy N, Shiroto K, Malik G, Huang CK, Gaestel M, Abdellatif M, Tosaki A, Maulik N, Das DK (2007) Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream target. J Mol Cell Cardiol 42:981–990PubMedCrossRefGoogle Scholar
  14. 14.
    Bielewicz J, Kurzepa J, Lagowska-Lenard M, Bartosik-Psujek H (2010) The novel views on the patomechanism of ischemic stroke. Wiad Lek 63:213–220PubMedGoogle Scholar
  15. 15.
    Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis 21(Suppl 2):9–20PubMedCrossRefGoogle Scholar
  16. 16.
    Zhan L, Peng W, Sun W, Xu E (2011) Hypoxic preconditioning induces neuroprotection against transient global ischemia in adult rats via preserving the activity of Na+/K +−ATPase. Neurochem Int 59:65–72PubMedCrossRefGoogle Scholar
  17. 17.
    Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeilschifter W, Czech B, Hoffmann BP, Sujak M, Kahles T, Steinmetz H, Neumann-Haefelin T, Pfeilschifter J (2010) Pyrrolidine dithiocarbamate activates p38 MAPK and protects brain endothelial cells from apoptosis: a mechanism for the protective effect in stroke? Neurochem Res 35:1391–1401PubMedCrossRefGoogle Scholar
  19. 19.
    Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272PubMedCrossRefGoogle Scholar
  20. 20.
    Zhan L, Wang T, Li W, Xu ZC, Sun W, Xu E (2010) Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre-conditioning in adult rats. J Neurochem 114:897–908PubMedCrossRefGoogle Scholar
  21. 21.
    Wang Y, Zhan L, Zeng W, Li K, Sun W, Xu ZC, Xu E (2011) The effect of GABA on the hypoxia-induced increase of epilepsy susceptibility in neonate rat. Neurochem Res 36:2409–2416PubMedCrossRefGoogle Scholar
  22. 22.
    Yano S, Morioka M, Fukunaga K, Kawano T, Hara T, Kai Y, Hamada J, Miyamoto E, Ushio Y (2001) Activation of Akt/protein kinase B contribute to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J Cereb Blood Flow Metab 21:351–360PubMedCrossRefGoogle Scholar
  23. 23.
    Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK 3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rat. J Cereb Blood Flow Metab 26:1479–1489PubMedCrossRefGoogle Scholar
  24. 24.
    Wu DC, Ye W, Che XM, Yang GY (2000) Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab 20:1320–1330PubMedCrossRefGoogle Scholar
  25. 25.
    Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, Legos JJ, Erhardt JA, Ohlstein EH, Hunter AJ, Harrison DC, Philpott K, Smith BR, Adams JL, Parsons AA (2001) Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev 21:129–145PubMedCrossRefGoogle Scholar
  26. 26.
    Lennmyr F, Ericsson A, Gerwins P, Ahlström H, Terént A (2003) Increased brain injury and vascular leakage after pretreatment with p38-inhibitor SB203580 in transient ischemia. Acta Neurol Scand 108:339–345PubMedCrossRefGoogle Scholar
  27. 27.
    Nishimura M, Sugino T, Nozaki K, Takagi Y, Hattori I, Hayashi J, Hashimoto N, Moriguchi T, Nishida E (2003) Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. J Cereb Blood Flow Metab 23:1052–1059PubMedCrossRefGoogle Scholar
  28. 28.
    Zhan L, Yan H, Zhou H, Sun W, Hou Q, Xu E (2013) Hypoxic preconditioning attenuates neuronal cell death by preventing MEK/ERK signaling pathway activation after transient global cerebral ischemia in adult rats. Mol Neurobiol 48:109–119PubMedCrossRefGoogle Scholar
  29. 29.
    Walton KM, DiRocco R, Bartlett BA, Koury E, Marcy VR, Jarvis B, Schaefer EM, Bhat RV (1998) Activation of p38MAPK in microglia after ischemia. J Neurochem 70:1764–1767PubMedCrossRefGoogle Scholar
  30. 30.
    Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641PubMedGoogle Scholar
  31. 31.
    Cuadrado A, Nebreda AR (2010) Mechanisms and functions of p38 MAPK signalling. Biochem J 429:403–417PubMedCrossRefGoogle Scholar
  32. 32.
    Lee SH, Park J, Che Y, Han PL, Lee JK (2000) Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. J Neurosci Res 60:623–631PubMedCrossRefGoogle Scholar
  33. 33.
    Seimon TA, Wang Y, Han S, Senokuchi T, Schrijvers DM, Kuriakose G, Tall AR, Tabas IA (2009) Macrophage deficiency of p38alpha MAPK promotes apoptosis and plaque necrosis in advanced atherosclerotic lesions in mice. J Clin Invest 119:886–898PubMedCentralPubMedGoogle Scholar
  34. 34.
    Conrad PW, Rust RT, Han J, Millhorn DE, Beitner-Johnson D (1999) Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J Biol Chem 274:23570–23576PubMedCrossRefGoogle Scholar
  35. 35.
    Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lee HT, Chang YC, Wang LY, Wang ST, Huang CC, Ho CJ (2004) cAMP response element-binding protein activation in ligation preconditioning in neonatal brain. Ann Neurol 56:611–623PubMedCrossRefGoogle Scholar
  37. 37.
    Meller R, Minami M, Cameron A, Impey S, Chen D, Simon J-QP (2005) CREB-mediated Bcl-2 protein expression after ischaemic preconditioning. J Cerebr Blood flow Metab 25:234–246CrossRefGoogle Scholar
  38. 38.
    Alvarado-Kristensson M, Melander F, Leandersson K, Rönnstrand L, Wernstedt C, Andersson T (2004) p38-MAPK signals survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. J Exp Med 199:449–458PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pingping Zhu
    • 1
  • Lixuan Zhan
    • 1
  • Tingna Zhu
    • 1
  • Donghai Liang
    • 2
  • Jiaoyue Hu
    • 1
  • Weiwen Sun
    • 1
  • Qinghua Hou
    • 1
  • Huarong Zhou
    • 1
  • Baoxing Wu
    • 1
  • Yanmei Wang
    • 1
  • En Xu
    • 1
    Email author
  1. 1.Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhouPeople’s Republic of China
  2. 2.Yale School of Public Health, Yale UniversityNew HavenUSA

Personalised recommendations