Skip to main content

Advertisement

Log in

Transduction of Extracellular Cues into Cell Polarity: the Role of the Transmembrane Proteoglycan NG2

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Resident progenitor cells expressing nerve/glial antigen 2 (NG2) such as oligodendrocyte precursor cells (OPC) and pericytes persist in the adult brain. The transmembrane proteoglycan NG2 regulates migration of both these cell types in response to growth factors or specific components of the extracellular matrix. This role of NG2 is linked to the control of cell polarity. The polarization of OPC toward an acute lesion in the brain is impaired in NG2-deficient mice, supporting this concept. A review of the signaling pathways impinged on by NG2 reveals key proteins of cell polarity: phosphatidylinositol 3-kinase, focal adhesion kinase, Rho GTPases, and polarity complex proteins. In the scope of cell migration, I discuss here how the interplay of NG2 with signaling transmitted by extracellular cues can control the establishment of cell polarity, and I propose a model to integrate the apparent opposite effects of NG2 on cellular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Levine JM, Nishiyama A (1996) The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. Perspect Dev Neurobiol 3:245–259

    PubMed  CAS  Google Scholar 

  2. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn: Off Publ Am Assoc Anatomists 222:218–227

    CAS  Google Scholar 

  3. Trotter J, Karram K, Nishiyama A (2010) NG2 cells: properties, progeny and origin. Brain Res Rev 63:72–82

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A (2011) Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neuro-Oncol 105:57–65

    CAS  Google Scholar 

  5. Kucharova K, Stallcup WB (2010) The NG2 proteoglycan promotes oligodendrocyte progenitor proliferation and developmental myelination. Neuroscience 166:185–194

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Cattaruzza S, Ozerdem U, Denzel M, Ranscht B, Bulian P, Cavallaro U, Zanocco D, Colombatti A, Stallcup WB, Perris R (2013) Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells. Angiogenesis 16:309–327

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Gibby K, You WK, Kadoya K, Helgadottir H, Young LJ, Ellies LG, Chang Y, Cardiff RD, Stallcup WB (2012) Early vascular deficits are correlated with delayed mammary tumorigenesis in the MMTV-PyMT transgenic mouse following genetic ablation of the NG2 proteoglycan. Breast Cancer Res: BCR 14:R67

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Binamé F, Sakry D, Dimou L, Jolivel V, Trotter J (2013) NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 33:10858–10874

    PubMed  Google Scholar 

  9. Niehaus A, Stegmuller J, Diers-Fenger M, Trotter J (1999) Cell-surface glycoprotein of oligodendrocyte progenitors involved in migration. J Neurosci 19:4948–4961

    PubMed  CAS  Google Scholar 

  10. Stegmüller J, Schneider S, Hellwig A, Garwood J, Trotter J (2002) AN2, the mouse homologue of NG2, is a surface antigen on glial precursor cells implicated in control of cell migration. J Neurocytol 31:497–505

    PubMed  Google Scholar 

  11. Campoli M, Ferrone S, Wang X (2010) Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res 109:73–121

    PubMed  CAS  Google Scholar 

  12. Stallcup WB, Huang FJ (2008) A role for the NG2 proteoglycan in glioma progression. Cell Adh Migr 2:192–201

    PubMed  PubMed Central  Google Scholar 

  13. Stallcup WB, Dahlin-Huppe K (2001) Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization. J Cell Sci 114:2315–2325

    PubMed  CAS  Google Scholar 

  14. Burg MA, Tillet E, Timpl R, Stallcup WB (1996) Binding of the NG2 proteoglycan to type VI collagen and other extracellular matrix molecules. J Biol Chem 271:26110–26116

    PubMed  CAS  Google Scholar 

  15. Goretzki L, Burg MA, Grako KA, Stallcup WB (1999) High-affinity binding of basic fibroblast growth factor and platelet-derived growth factor-AA to the core protein of the NG2 proteoglycan. J Biol Chem 274:16831–16837

    PubMed  CAS  Google Scholar 

  16. Fang X, Burg MA, Barritt D, Dahlin-Huppe K, Nishiyama A, Stallcup WB (1999) Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Mol Biol Cell 10:3373–3387

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Makagiansar IT, Williams S, Dahlin-Huppe K, Fukushi J, Mustelin T, Stallcup WB (2004) Phosphorylation of NG2 proteoglycan by protein kinase C-alpha regulates polarized membrane distribution and cell motility. J Biol Chem 279:55262–55270

    PubMed  CAS  Google Scholar 

  18. Makagiansar IT, Williams S, Mustelin T, Stallcup WB (2007) Differential phosphorylation of NG2 proteoglycan by ERK and PKCalpha helps balance cell proliferation and migration. J Cell Biol 178:155–165

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, Stallcup WB (2000) The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 79:213–224

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Stegmüller J, Werner H, Nave KA, Trotter J (2003) The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J Biol Chem 278:3590–3598

    PubMed  Google Scholar 

  21. Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J (1999) Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol 1:507–513

    PubMed  CAS  Google Scholar 

  22. Majumdar M, Vuori K, Stallcup WB (2003) Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signal 15:79–84

    PubMed  CAS  Google Scholar 

  23. Schnorrer F, Kalchhauser I, Dickson BJ (2007) The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. Dev Cell 12:751–766

    PubMed  CAS  Google Scholar 

  24. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    PubMed  CAS  Google Scholar 

  25. Binamé F, Pawlak G, Roux P, Hibner U (2010) What makes cells move: requirements and obstacles for spontaneous cell motility. Mol Biosyst 6:648–661

    PubMed  Google Scholar 

  26. Petrie RJ, Doyle AD, Yamada KM (2009) Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 10:538–549

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Maeda YT, Inose J, Matsuo MY, Iwaya S, Sano M (2008) Ordered patterns of cell shape and orientational correlation during spontaneous cell migration. PLoS One 3:e3734

    PubMed  PubMed Central  Google Scholar 

  28. Etienne-Manneville S (2008) Polarity proteins in migration and invasion. Oncogene 27:6970–6980

    PubMed  CAS  Google Scholar 

  29. Dawes AT, Edelstein-Keshet L (2007) Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys J 92:744–768

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    PubMed  Google Scholar 

  31. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  CAS  Google Scholar 

  32. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277:3904–3923

    PubMed  CAS  Google Scholar 

  33. Huttenlocher A, Horwitz AR (2011) Integrins in cell migration. Cold Spring Harb Perspect Biol 3:a005074

    PubMed  PubMed Central  Google Scholar 

  34. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S, Bershadsky A, Addadi L et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    PubMed  CAS  Google Scholar 

  35. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Lavelin I, Wolfenson H, Patla I, Henis YI, Medalia O, Volberg T, Livne A, Kam Z, Geiger B (2013) Differential effect of actomyosin relaxation on the dynamic properties of focal adhesion proteins. PLoS One 8:e73549

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Scales TM, Parsons M (2011) Spatial and temporal regulation of integrin signalling during cell migration. Curr Opin Cell Biol 23:562–568

    PubMed  CAS  Google Scholar 

  38. Mueller SC, Ghersi G, Akiyama SK, Sang QX, Howard L, Pineiro-Sanchez M, Nakahara H, Yeh Y, Chen WT (1999) A novel protease-docking function of integrin at invadopodia. J Biol Chem 274:24947–24952

    PubMed  CAS  Google Scholar 

  39. Regen CM, Horwitz AF (1992) Dynamics of beta 1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol 119:1347–1359

    PubMed  CAS  Google Scholar 

  40. Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193:655–665

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TT, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161:155–167

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Lim ST, Longley RL, Couchman JR, Woods A (2003) Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKC alpha) increases focal adhesion localization of PKC alpha. J Biol Chem 278:13795–13802

    PubMed  CAS  Google Scholar 

  43. Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I, Oh ES (2004) Syndecan-4 regulates localization, activity and stability of protein kinase C-alpha. Biochem J 378:1007–1014

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Hwangbo C, Kim J, Lee JJ, Lee JH (2010) Activation of the integrin effector kinase focal adhesion kinase in cancer cells is regulated by crosstalk between protein kinase Calpha and the PDZ adapter protein mda-9/Syntenin. Cancer Res 70:1645–1655

    PubMed  CAS  Google Scholar 

  46. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Gene Dev 13:35–48

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Estrada B, Gisselbrecht SS, Michelson AM (2007) The transmembrane protein Perdido interacts with Grip and integrins to mediate myotube projection and attachment in the Drosophila embryo. Development 134:4469–4478

    PubMed  CAS  Google Scholar 

  48. Staub E, Hinzmann B, Rosenthal A (2002) A novel repeat in the melanoma-associated chondroitin sulfate proteoglycan defines a new protein family. FEBS Lett 527:114–118

    PubMed  CAS  Google Scholar 

  49. Nishiyama A, Stallcup WB (1993) Expression of NG2 proteoglycan causes retention of type VI collagen on the cell surface. Mol Biol Cell 4:1097–1108

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Tillet E, Ruggiero F, Nishiyama A, Stallcup WB (1997) The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central nonglobular domain of its core protein. J Biol Chem 272:10769–10776

    PubMed  CAS  Google Scholar 

  51. Burg MA, Nishiyama A, Stallcup WB (1997) A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res 235:254–264

    PubMed  CAS  Google Scholar 

  52. Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Chekenya M, Krakstad C, Svendsen A, Netland IA, Staalesen V, Tysnes BB, Selheim F, Wang J, Sakariassen PO, Sandal T et al (2008) The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene 27:5182–5194

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Iida J, Meijne AM, Spiro RC, Roos E, Furcht LT, McCarthy JB (1995) Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma-associated proteoglycan (NG2) and alpha 4 beta 1 integrin. Cancer Res 55:2177–2185

    PubMed  CAS  Google Scholar 

  55. Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB (2004) Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol 165:881–891

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Chatterjee N, Stegmuller J, Schatzle P, Karram K, Koroll M, Werner HB, Nave KA, Trotter J (2008) Interaction of syntenin-1 and the NG2 proteoglycan in migratory oligodendrocyte precursor cells. J Biol Chem 283:8310–8317

    PubMed  CAS  Google Scholar 

  57. Mahalingam Y, Gallagher JT, Couchman JR (2007) Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J Biol Chem 282:3221–3230

    PubMed  CAS  Google Scholar 

  58. Iida J, Pei D, Kang T, Simpson MA, Herlyn M, Furcht LT, McCarthy JB (2001) Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. J Biol Chem 276:18786–18794

    PubMed  CAS  Google Scholar 

  59. Dertinger SK, Jiang X, Li Z, Murthy VN, Whitesides GM (2002) Gradients of substrate-bound laminin orient axonal specification of neurons. Proc Natl Acad Sci U S A 99:12542–12547

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Gunawan RC, Silvestre J, Gaskins HR, Kenis PJ, Leckband DE (2006) Cell migration and polarity on microfabricated gradients of extracellular matrix proteins. Langmuir: ACS J Surf Colloids 22:4250–4258

    CAS  Google Scholar 

  61. Rhoads DS, Guan JL (2007) Analysis of directional cell migration on defined FN gradients: role of intracellular signaling molecules. Exp Cell Res 313:3859–3867

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635

    PubMed  CAS  Google Scholar 

  63. Nishiyama A, Lin XH, Stallcup WB (1995) Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol Biol Cell 6:1819–1832

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Asher RA, Morgenstern DA, Properzi F, Nishiyama A, Levine JM, Fawcett JW (2005) Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro. Mol Cell Neurosci 29:82–96

    PubMed  CAS  Google Scholar 

  65. Bakhti M, Snaidero N, Schneider D, Aggarwal S, Mobius W, Janshoff A, Eckhardt M, Nave KA, Simons M (2013) Loss of electrostatic cell-surface repulsion mediates myelin membrane adhesion and compaction in the central nervous system. Proc Natl Acad Sci U S A 110:3143–3148

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Bartus K, James ND, Bosch KD, Bradbury EJ (2012) Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 235:5–17

    PubMed  CAS  Google Scholar 

  67. Ughrin YM, Chen ZJ, Levine JM (2003) Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci 23:175–186

    PubMed  CAS  Google Scholar 

  68. Lee SI, Zhang W, Ravi M, Weschenfelder M, Bastmeyer M, Levine JM (2013) Atypical protein kinase C and Par3 are required for proteoglycan-induced axon growth inhibition. J Neurosci 33:2541–2554

    PubMed  CAS  Google Scholar 

  69. de Castro R Jr, Tajrishi R, Claros J, Stallcup WB (2005) Differential responses of spinal axons to transection: influence of the NG2 proteoglycan. Exp Neurol 192:299–309

    PubMed  Google Scholar 

  70. Yang Z, Suzuki R, Daniels SB, Brunquell CB, Sala CJ, Nishiyama A (2006) NG2 glial cells provide a favorable substrate for growing axons. J Neurosci 26:3829–3839

    PubMed  CAS  Google Scholar 

  71. Hossain-Ibrahim MK, Rezajooi K, Stallcup WB, Lieberman AR, Anderson PN (2007) Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse. BMC Neurosci 8:80

    PubMed  PubMed Central  Google Scholar 

  72. Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NG et al (2008) Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 209:426–445

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    PubMed  CAS  Google Scholar 

  74. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    PubMed  CAS  Google Scholar 

  75. Platek A, Vassilev VS, de Diesbach P, Tyteca D, Mettlen M, Courtoy PJ (2007) Constitutive diffuse activation of phosphoinositide 3-kinase at the plasma membrane by v-Src suppresses the chemotactic response to PDGF by abrogating the polarity of PDGF receptor signalling. Exp Cell Res 313:1090–1105

    PubMed  CAS  Google Scholar 

  76. Somasundaram R, Schuppan D (1996) Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB). J Biol Chem 271:26884–26891

    PubMed  CAS  Google Scholar 

  77. Smith EM, Mitsi M, Nugent MA, Symes K (2009) PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation. Proc Natl Acad Sci U S A 106:21683–21688

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Hogg PJ, Hotchkiss KA, Jimenez BM, Stathakis P, Chesterman CN (1997) Interaction of platelet-derived growth factor with thrombospondin 1. Biochem J 326(Pt 3):709–716

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Margosio B, Marchetti D, Vergani V, Giavazzi R, Rusnati M, Presta M, Taraboletti G (2003) Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood 102:4399–4406

    PubMed  CAS  Google Scholar 

  80. Raines EW, Lane TF, Iruela-Arispe ML, Ross R, Sage EH (1992) The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors. Proc Natl Acad Sci U S A 89:1281–1285

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Brekken RA, Sage EH (2000) SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol: J Int Soc Matrix Biol 19:569–580

    CAS  Google Scholar 

  82. Lustig F, Hoebeke J, Ostergren-Lunden G, Velge-Roussel F, Bondjers G, Olsson U, Ruetschi U, Fager G (1996) Alternative splicing determines the binding of platelet-derived growth factor (PDGF-AA) to glycosaminoglycans. Biochemistry 35:12077–12085

    PubMed  CAS  Google Scholar 

  83. Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL (2004) Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF)-FGF receptor-heparin complex. J Mol Biol 339:821–834

    PubMed  CAS  Google Scholar 

  84. Zhou Z, Wang J, Cao R, Morita H, Soininen R, Chan KM, Liu B, Cao Y, Tryggvason K (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res 64:4699–4702

    PubMed  CAS  Google Scholar 

  85. Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267:10337–10341

    PubMed  CAS  Google Scholar 

  86. Naimy H, Buczek-Thomas JA, Nugent MA, Leymarie N, Zaia J (2011) Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J Biol Chem 286:19311–19319

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848

    PubMed  CAS  Google Scholar 

  88. Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

    PubMed  CAS  Google Scholar 

  89. Grako KA, Stallcup WB (1995) Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res 221:231–240

    PubMed  CAS  Google Scholar 

  90. Grako KA, Ochiya T, Barritt D, Nishiyama A, Stallcup WB (1999) PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci 112(Pt 6):905–915

    PubMed  CAS  Google Scholar 

  91. Ozerdem U, Stallcup WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Redwine JM, Blinder KL, Armstrong RC (1997) In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res 50:229–237

    PubMed  CAS  Google Scholar 

  93. He Y, Cai W, Wang L, Chen P (2009) A developmental study on the expression of PDGFalphaR immunoreactive cells in the brain of postnatal rats. Neurosci Res 65:272–279

    PubMed  CAS  Google Scholar 

  94. Zhang H, Vutskits L, Calaora V, Durbec P, Kiss JZ (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93–103

    PubMed  CAS  Google Scholar 

  95. Fukata M, Nakagawa M, Kaibuchi K (2003) Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol 15:590–597

    PubMed  CAS  Google Scholar 

  96. Assémat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D (2008) Polarity complex proteins. Biochim Biophys Acta 1778:614–630

    PubMed  Google Scholar 

  97. Mertens AE, Rygiel TP, Olivo C, van der Kammen R, Collard JG (2005) The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J Cell Biol 170:1029–1037

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Shin K, Wang Q, Margolis B (2007) PATJ regulates directional migration of mammalian epithelial cells. EMBO Rep 8:158–164

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Kunda P, Paglini G, Quiroga S, Kosik K, Caceres A (2001) Evidence for the involvement of Tiam1 in axon formation. J Neurosci 21:2361–2372

    PubMed  CAS  Google Scholar 

  100. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K (2005) PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7:270–277

    PubMed  CAS  Google Scholar 

  101. Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG (2007) The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623–1634

    PubMed  CAS  Google Scholar 

  102. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    PubMed  CAS  Google Scholar 

  103. Derivery E, Gautreau A (2010) Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. BioEssays: News Rev Mol Cel Dev Biol 32:119–131

    CAS  Google Scholar 

  104. Fujisawa K, Fujita A, Ishizaki T, Saito Y, Narumiya S (1996) Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J Biol Chem 271:23022–23028

    PubMed  CAS  Google Scholar 

  105. Maiti S, Michelot A, Gould C, Blanchoin L, Sokolova O, Goode BL (2012) Structure and activity of full-length formin mDia1. Cytoskeleton 69:393–405

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S (2012) mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 287:4702–4714

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    PubMed  CAS  Google Scholar 

  108. Zhang H, Macara IG (2008) The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev Cell 14:216–226

    PubMed  PubMed Central  Google Scholar 

  109. Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S, Amano M, Kaibuchi K (2008) Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 14:205–215

    PubMed  CAS  Google Scholar 

  110. Lin XH, Grako KA, Burg MA, Stallcup WB (1996) NG2 proteoglycan and the actin-binding protein fascin define separate populations of actin-containing filopodia and lamellipodia during cell spreading and migration. Mol Biol Cell 7:1977–1993

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    PubMed  CAS  Google Scholar 

  113. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655

    PubMed  CAS  Google Scholar 

  114. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16:668–676

    PubMed  CAS  Google Scholar 

  115. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D et al (2002) Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 277:44417–44430

    PubMed  CAS  Google Scholar 

  117. Kranenburg O, Poland M, Gebbink M, Oomen L, Moolenaar WH (1997) Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J Cell Sci 110(Pt 19):2417–2427

    PubMed  CAS  Google Scholar 

  118. Yamaguchi Y, Katoh H, Yasui H, Mori K, Negishi M (2001) RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276:18977–18983

    PubMed  CAS  Google Scholar 

  119. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072

    PubMed  CAS  Google Scholar 

  120. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Kurokawa K, Matsuda M (2005) Localized RhoA activation as a requirement for the induction of membrane ruffling. Mol Biol Cell 16:4294–4303

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Arakawa Y, Bito H, Furuyashiki T, Tsuji T, Takemoto-Kimura S, Kimura K, Nozaki K, Hashimoto N, Narumiya S (2003) Control of axon elongation via an SDF-1alpha/Rho/mDia pathway in cultured cerebellar granule neurons. J Cell Biol 161:381–391

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J, Phillips J, Siu J et al (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20:328–340

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13:609–622

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Cote JF, Vuori K (2007) GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol 17:383–393

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1186

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM (2006) Assembly and mechanosensory function of focal adhesions: experiments and models. Eur J Cell Biol 85:165–173

    PubMed  CAS  Google Scholar 

  128. Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498

    PubMed  CAS  Google Scholar 

  129. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265:23–32

    PubMed  CAS  Google Scholar 

  130. Ng T, Shima D, Squire A, Bastiaens PI, Gschmeissner S, Humphries MJ, Parker PJ (1999) PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J 18:3909–3923

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ et al (2006) Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16:1796–1806

    PubMed  CAS  Google Scholar 

  132. Jaken S, Parker PJ (2000) Protein kinase C binding partners. BioEssays: News Rev Mol Cel Dev Biol 22:245–254

    CAS  Google Scholar 

  133. Denning MF (2012) Specifying protein kinase C functions in melanoma. Pigment Cell Melanoma Res 25:466–476

    PubMed  CAS  Google Scholar 

  134. Xiao L, Hu C, Yang W, Guo D, Li C, Shen W, Liu X, Aijun H, Dan W, He C (2013) NMDA receptor couples Rac1-GEF Tiam1 to direct oligodendrocyte precursor cell migration. Glia 61:2078–2099

    PubMed  Google Scholar 

Download references

Acknowledgments

My work on NG2 signaling was supported by the Deutsche Forschungsgemeinschaft. I thank Valérie Jolivel for comments on this manuscript and Jacqueline Trotter for support and comments on this manuscript.

Conflict of Interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Binamé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binamé, F. Transduction of Extracellular Cues into Cell Polarity: the Role of the Transmembrane Proteoglycan NG2. Mol Neurobiol 50, 482–493 (2014). https://doi.org/10.1007/s12035-013-8610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8610-8

Keywords

Navigation