Molecular Neurobiology

, Volume 49, Issue 3, pp 1270–1281 | Cite as

Autophagy Coupling Interplay: Can Improve Cellular Repair and Aging?

  • Deepak Chhangani
  • Sachin Chinchwadkar
  • Amit MishraEmail author


Regular protein synthesis is a needful and complex task for a healthy cell. Improper folding leads to the deposition of misfolded proteins in cells. Autophagy and ubiquitin–proteasome system (UPS) are the conserved intracellular degradation processes of eukaryotic cells. How exactly these two pathways cross talk to each other is unclear. We do not know how the impairment of autophagy or UPS leads to the disturbance in cellular homeostasis and contribute into cellular aging and neurodegeneration. Here in this review, we will focus on the functional interconnections of autophagy and UPS, and why their loss of function results in abnormal aggregation of misfolded proteotoxic species in cells. Finally, we enumerate and discuss the crucial inducers of autophagy pathways and elaborate their intersection steps, which have been considered to be advantageous in aging linked with the abnormal protein aggregation. The final goal of this review is to improve our current understanding about multifaceted properties and interactions of autophagy and UPS, which may provide new insights to identify novel therapeutic strategies for aging and neurodegenerative diseases.


Autophagy Ubiquitin proteasome system Aging Misfolded proteins Cell death 



This work was supported by the Department of Biotechnology, Government of India. AM was supported by Ramalinganswami Fellowship and Innovative Young Biotechnologist Award (IYBA) scheme from the Department of Biotechnology, Government of India. The authors would like to thank Mr. Bharat Pareek and Mr. Rahul Sathya Babu for their technical assistance and the entire lab management during the manuscript preparation. We apologize to various authors whose work could not be included due to space limitations.

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899. doi: 10.1038/nature02263 nature02263 PubMedGoogle Scholar
  2. 2.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. doi: 10.1101/gad.1599207 PubMedGoogle Scholar
  3. 3.
    Pechmann S, Willmund F, Frydman J (2013) The ribosome as a hub for protein quality control. Mol Cell 49(3):411–421. doi: 10.1016/j.molcel.2013.01.020 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Liu B, Han Y, Qian SB (2013) Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49(3):453–463. doi: 10.1016/j.molcel.2012.12.001 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, Takashima A, Gouras GK, Greengard P, Xu H (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100(2):721–726. doi: 10.1073/pnas.242720499 242720499 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Mishra A, Dikshit P, Purkayastha S, Sharma J, Nukina N, Jana NR (2008) E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity. J Biol Chem 283(12):7648–7656. doi: 10.1074/jbc.M706620200 PubMedGoogle Scholar
  7. 7.
    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145. doi: 10.1074/jbc.M702824200 PubMedGoogle Scholar
  8. 8.
    Chhangani D, Mishra A (2013) Mahogunin ring finger-1 (MGRN1) suppresses chaperone-associated misfolded protein aggregation and toxicity. Sci Rep 3:1972. doi: 10.1038/srep01972 PubMedCentralPubMedGoogle Scholar
  9. 9.
    Yamanaka T, Nukina N (2010) Transcription factor sequestration by polyglutamine proteins. Methods Mol Biol 648:215–229. doi: 10.1007/978-1-60761-756-3_14 PubMedGoogle Scholar
  10. 10.
    Preissler S, Deuerling E (2012) Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 37(7):274–283. doi: 10.1016/j.tibs.2012.03.002 PubMedGoogle Scholar
  11. 11.
    Duttler S, Pechmann S, Frydman J (2013) Principles of cotranslational ubiquitination and quality control at the ribosome. Mol Cell 50(3):379–393. doi: 10.1016/j.molcel.2013.03.010 PubMedGoogle Scholar
  12. 12.
    Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin–proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782(12):691–699. doi: 10.1016/j.bbadis.2008.10.002 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP (2007) HDAC6 at the intersection of autophagy, the ubiquitin–proteasome system and neurodegeneration. Autophagy 3(6):643–645PubMedGoogle Scholar
  14. 14.
    Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. doi: 10.1038/nrd3050 PubMedGoogle Scholar
  15. 15.
    Zheng Q, Li J, Wang X (2009) Interplay between the ubiquitin–proteasome system and autophagy in proteinopathies. Int J Physiol Pathophysiol Pharmacol 1(2):127–142PubMedCentralPubMedGoogle Scholar
  16. 16.
    Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4(1):1–26PubMedCentralPubMedGoogle Scholar
  17. 17.
    Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, Ng SS, Cho CH, Sung JJ, Wu WK (2013) A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. Autophagy 9 (10). doi:  10.4161/auto.25573
  18. 18.
    Ihara Y, Morishima-Kawashima M, Nixon R (2012) The ubiquitin–proteasome system and the autophagic–lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med 2 (8). doi: 10.1101/cshperspect.a006361
  19. 19.
    Matsuda N, Tanaka K (2010) Does impairment of the ubiquitin–proteasome system or the autophagy-lysosome pathway predispose individuals to neurodegenerative disorders such as Parkinson’s disease? J Alzheimers Dis 19(1):1–9. doi: 10.3233/JAD-2010-1231 PubMedGoogle Scholar
  20. 20.
    Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995. doi: 10.1126/science.1067122 PubMedGoogle Scholar
  21. 21.
    Lamark T, Johansen T (2012) Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012:736905. doi: 10.1155/2012/736905 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Bove J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S (2006) Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol 60(2):260–264. doi: 10.1002/ana.20937 PubMedGoogle Scholar
  23. 23.
    Chung KK, Dawson VL, Dawson TM (2001) The role of the ubiquitin–proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24(11 Suppl):S7–S14PubMedGoogle Scholar
  24. 24.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013. doi: 10.1074/jbc.M300227200 PubMedGoogle Scholar
  25. 25.
    Engelender S (2012) alpha-Synuclein fate: proteasome or autophagy? Autophagy 8(3):418–420. doi: 10.4161/auto.19085 PubMedGoogle Scholar
  26. 26.
    Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15(11):4829–4840. doi: 10.1091/mbc.E04-06-0477 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin–proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171(2):513–524. doi: 10.2353/ajpath.2007.070188 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4(12):e423. doi: 10.1371/journal.pbio.0040423 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404(6779):770–774. doi: 10.1038/35008096 PubMedGoogle Scholar
  30. 30.
    Chhangani D, Joshi AP, Mishra A (2012) E3 ubiquitin ligases in protein quality control mechanism. Mol Neurobiol 45(3):571–585. doi: 10.1007/s12035-012-8273-x PubMedGoogle Scholar
  31. 31.
    Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330(6009):1344–1348. doi: 10.1126/science.1193497 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40(2):280–293. doi: 10.1016/j.molcel.2010.09.023 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Yamamoto A, Simonsen A (2011) The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 43(1):17–28. doi: 10.1016/j.nbd.2010.08.015 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143(7):1883–1898PubMedCentralPubMedGoogle Scholar
  35. 35.
    Mitraki A (2010) Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol 79:89–125. doi: 10.1016/S1876-1623(10)79003-9 PubMedGoogle Scholar
  36. 36.
    Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759. doi: 10.1074/jbc.M208641200 PubMedGoogle Scholar
  37. 37.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292(5521):1552–1555. doi: 10.1126/science.292.5521.1552 PubMedGoogle Scholar
  38. 38.
    Andre R, Tabrizi SJ (2012) Misfolded PrP and a novel mechanism of proteasome inhibition. Prion 6(1):32–36. doi: 10.4161/pri.6.1.18272 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Low P, Varga A, Pircs K, Nagy P, Szatmari Z, Sass M, Juhasz G (2013) Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila. BMC Cell Biol 14(1):29. doi: 10.1186/1471-2121-14-29 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Kraft C, Peter M, Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12(9):836–841. doi: 10.1038/ncb0910-836 PubMedGoogle Scholar
  41. 41.
    McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594. doi: 10.1038/35086067 PubMedGoogle Scholar
  42. 42.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi: 10.1038/nature06639 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Nassif M, Hetz C (2012) Autophagy impairment: a crossroad between neurodegeneration and tauopathies. BMC Biol 10:78. doi: 10.1186/1741-7007-10-78 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi: 10.1016/j.cell.2007.12.018 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269. doi: 10.1016/j.molcel.2009.04.026 PubMedGoogle Scholar
  46. 46.
    Chhangani D, Mishra A (2013) Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 48(1):141–156. doi: 10.1007/s12035-013-8411-0 PubMedGoogle Scholar
  47. 47.
    Chhangani D, Jana NR, Mishra A (2013) Misfolded proteins recognition strategies of E3 ubiquitin ligases and neurodegenerative diseases. Mol Neurobiol 47(1):302–312. doi: 10.1007/s12035-012-8351-0 PubMedGoogle Scholar
  48. 48.
    Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4 (11). doi: 10.1101/cshperspect.a011338
  49. 49.
    Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474(7349):105–108. doi: 10.1038/nature09966 PubMedCentralPubMedGoogle Scholar
  50. 50.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. doi: 10.1038/nrm3028 PubMedGoogle Scholar
  51. 51.
    Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803. doi: 10.1083/jcb.200809125 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496(7445):372–376. doi: 10.1038/nature12043 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4(1):85–87PubMedCentralPubMedGoogle Scholar
  54. 54.
    Chin LS, Olzmann JA, Li L (2010) Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans 38(Pt 1):144–149. doi: 10.1042/BST0380144 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Herman AM, Moussa CE (2011) The ubiquitin ligase parkin modulates the execution of autophagy. Autophagy 7(8):919–921PubMedGoogle Scholar
  56. 56.
    Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097. doi: 10.1016/j.bbabio.2008.05.001 PubMedGoogle Scholar
  57. 57.
    Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2(2):80–84PubMedGoogle Scholar
  58. 58.
    Kundu M, Thompson CB (2005) Macroautophagy versus mitochondrial autophagy: a question of fate? Cell Death Differ 12(Suppl 2):1484–1489. doi: 10.1038/sj.cdd.4401780 PubMedGoogle Scholar
  59. 59.
    Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5. doi: 10.1089/rej.2005.8.3 PubMedGoogle Scholar
  60. 60.
    Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. doi: 10.1042/BJ20111451 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Tang F, Wang B, Li N, Wu Y, Jia J, Suo T, Chen Q, Liu YJ, Tang J (2011) RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS One 6(9):e24367. doi: 10.1371/journal.pone.0024367 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2(11):806–819. doi: 10.1038/35097565 PubMedGoogle Scholar
  63. 63.
    Mishra A, Maheshwari M, Chhangani D, Fujimori-Tonou N, Endo F, Joshi AP, Jana NR, Yamanaka K (2013) E6-AP association promotes SOD1 aggresomes degradation and suppresses toxicity. Neurobiol Aging 34(4):1310 e1311–1323. doi: 10.1016/j.neurobiolaging.2012.08.016 Google Scholar
  64. 64.
    Mishra A, Godavarthi SK, Maheshwari M, Goswami A, Jana NR (2009) The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins. J Biol Chem 284(16):10537–10545. doi: 10.1074/jbc.M806804200 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Morito D, Hirao K, Oda Y, Hosokawa N, Tokunaga F, Cyr DM, Tanaka K, Iwai K, Nagata K (2008) Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19(4):1328–1336. doi: 10.1091/mbc.E07-06-0601 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Ying Z, Wang H, Fan H, Zhu X, Zhou J, Fei E, Wang G (2009) Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum Mol Genet 18(22):4268–4281. doi: 10.1093/hmg/ddp380 PubMedGoogle Scholar
  67. 67.
    Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13(12):1504–1509. doi: 10.1038/nm1686 PubMedGoogle Scholar
  68. 68.
    Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR (2013) Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 24(8):1153–1162. doi: 10.1091/mbc.E12-08-0607 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nat Neurosci 13(7):805–811. doi: 10.1038/nn.2575 PubMedGoogle Scholar
  70. 70.
    Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010. doi: 10.1038/nrm2529 PubMedCentralPubMedGoogle Scholar
  71. 71.
    Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153(7):1461–1474. doi: 10.1016/j.cell.2013.05.037 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Qiang L, Wu C, Ming M, Viollet B, He YY (2013) Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem 288(3):1603–1611. doi: 10.1074/jbc.M112.415224 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24PubMedCentralPubMedGoogle Scholar
  74. 74.
    Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O’Kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4(5):295–305. doi: 10.1038/nchembio.79 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Kabuta T, Suzuki Y, Wada K (2006) Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J Biol Chem 281(41):30524–30533. doi: 10.1074/jbc.M603337200 PubMedGoogle Scholar
  76. 76.
    Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27(5):1119–1130. doi: 10.1111/j.1460-9568.2008.06084.x PubMedGoogle Scholar
  77. 77.
    Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC (2012) Autophagy and polyglutamine diseases. Prog Neurobiol 97(2):67–82. doi: 10.1016/j.pneurobio.2011.08.013 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. doi: 10.1038/nature04724 PubMedGoogle Scholar
  79. 79.
    Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135(Pt 7):2169–2177. doi: 10.1093/brain/aws143 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4):352–361. doi: 10.1016/S1474-4422(07)70076-5 PubMedGoogle Scholar
  81. 81.
    Bergamini E (2006) Autophagy: a cell repair mechanism that retards ageing and age-associated diseases and can be intensified pharmacologically. Mol Aspects Med 27(5–6):403–410. doi: 10.1016/j.mam.2006.08.001 PubMedGoogle Scholar
  82. 82.
    Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24(12):604–612. doi: 10.1016/j.tig.2008.10.002 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Vellai T (2009) Autophagy genes and ageing. Cell Death Differ 16(1):94–102. doi: 10.1038/cdd.2008.126 PubMedGoogle Scholar
  84. 84.
    Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301(5638):1387–1391. doi: 10.1126/science.1087782 PubMedGoogle Scholar
  85. 85.
    Liu Y, Shi S, Gu Z, Du Y, Liu M, Yan S, Gao J, Li J, Shao Y, Zhong W, Chen X, Li C (2012) Impaired autophagic function in rat islets with aging. Age (Dordr). doi: 10.1007/s11357-012-9456-0 Google Scholar
  86. 86.
    Hekimi S, Guarente L (2003) Genetics and the specificity of the aging process. Science 299(5611):1351–1354. doi: 10.1126/science.1082358 PubMedGoogle Scholar
  87. 87.
    Kirkwood TB (2008) A systematic look at an old problem. Nature 451(7179):644–647. doi: 10.1038/451644a PubMedGoogle Scholar
  88. 88.
    Bernardes de Jesus B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, Blasco MA (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4(8):691–704. doi: 10.1002/emmm.201200245 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N (2004) The role of autophagy during the early neonatal starvation period. Nature 432(7020):1032–1036. doi: 10.1038/nature03029 PubMedGoogle Scholar
  90. 90.
    Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7(2):167–178. doi: 10.1016/j.devcel.2004.07.009 PubMedGoogle Scholar
  91. 91.
    Li L, Chen Y, Gibson SB (2012) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25(1):50–65. doi: 10.1016/j.cellsig.2012.09.020 PubMedGoogle Scholar
  92. 92.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721PubMedCentralPubMedGoogle Scholar
  93. 93.
    Liu Q, Shang F, Guo W, Hobbs M, Valverde P, Reddy V, Taylor A (2004) Regulation of the ubiquitin proteasome pathway in human lens epithelial cells during the cell cycle. Exp Eye Res 78(2):197–205PubMedGoogle Scholar
  94. 94.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890. doi: 10.1016/j.cub.2004.03.059 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Cui M, Yu H, Wang J, Gao J, Li J (2013) Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J Diabetes Res 2013:852754. doi: 10.1155/2013/852754 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E, Weih M, Bozhkov PV (2013) Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis. Aging Cell 12(2):327–329. doi: 10.1111/acel.12048 PubMedGoogle Scholar
  97. 97.
    Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800. doi: 10.1038/35001622 PubMedGoogle Scholar
  98. 98.
    Sun J, Kale SP, Childress AM, Pinswasdi C, Jazwinski SM (1994) Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem 269(28):18638–18645PubMedGoogle Scholar
  99. 99.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464. doi: 10.1038/366461a0 PubMedGoogle Scholar
  100. 100.
    Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460. doi: 10.1016/j.cell.2005.02.002 PubMedGoogle Scholar
  101. 101.
    Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338PubMedGoogle Scholar
  102. 102.
    Keller JN, Huang FF, Markesbery WR (2000) Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98(1):149–156PubMedGoogle Scholar
  103. 103.
    Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1(2):279–293PubMedGoogle Scholar
  104. 104.
    Low P (2011) The role of ubiquitin–proteasome system in ageing. Gen Comp Endocrinol 172(1):39–43. doi: 10.1016/j.ygcen.2011.02.005 PubMedGoogle Scholar
  105. 105.
    Necchi D, Lomoio S, Scherini E (2011) Dysfunction of the ubiquitin–proteasome system in the cerebellum of aging Ts65Dn mice. Exp Neurol 232(2):114–118. doi: 10.1016/j.expneurol.2011.08.009 PubMedGoogle Scholar
  106. 106.
    Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995. doi: 10.1126/science.1099993 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54. doi: 10.1016/j.pneurobio.2013.06.002 PubMedGoogle Scholar
  108. 108.
    Wang F, Durfee LA, Huibregtse JM (2013) A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol Cell 50(3):368–378. doi: 10.1016/j.molcel.2013.03.009 PubMedGoogle Scholar
  109. 109.
    Schreiber A, Peter M (2013) Substrate recognition in selective autophagy and the ubiquitin–proteasome system. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2013.03.019 PubMedGoogle Scholar
  110. 110.
    Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1):90–97. doi: 10.1038/nm.2069 PubMedGoogle Scholar
  111. 111.
    Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, Huerta C, Virgin HW, Helms JB, Eerland R, Tooze SA, Xavier R, Lenschow DJ, Yamamoto A, King D, Lichtarge O, Grishin NV, Spector SA, Kaloyanova DV, Levine B (2013) Identification of a candidate therapeutic autophagy-inducing peptide. Nature 494(7436):201–206. doi: 10.1038/nature11866 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Li X, Fan Z (2010) The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res 70(14):5942–5952. doi: 10.1158/0008-5472.CAN-10-0157 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Park KJ, Lee SH, Kim TI, Lee HW, Lee CH, Kim EH, Jang JY, Choi KS, Kwon MH, Kim YS (2007) A human scFv antibody against TRAIL receptor 2 induces autophagic cell death in both TRAIL-sensitive and TRAIL-resistant cancer cells. Cancer Res 67(15):7327–7334. doi: 10.1158/0008-5472.CAN-06-4766 PubMedGoogle Scholar
  114. 114.
    Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6):727–738PubMedGoogle Scholar
  115. 115.
    Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146):859–863. doi: 10.1038/nature05853 PubMedGoogle Scholar
  116. 116.
    He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, An Y, Shi T, Ma D (2009) High-throughput functional screening for autophagy-related genes and identification of TM9SF1 as an autophagosome-inducing gene. Autophagy 5(1):52–60PubMedGoogle Scholar
  117. 117.
    Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi: 10.1093/emboj/19.21.5720 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Chan EY, Kir S, Tooze SA (2007) siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem 282(35):25464–25474. doi: 10.1074/jbc.M703663200 PubMedGoogle Scholar
  119. 119.
    Arsham AM, Neufeld TP (2009) A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway. PLoS One 4(6):e6068. doi: 10.1371/journal.pone.0006068 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65(8):3336–3346. doi: 10.1158/0008-5472.CAN-04-3640 PubMedGoogle Scholar
  121. 121.
    Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9):1107–1117PubMedGoogle Scholar
  122. 122.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi: 10.1038/ng1362 PubMedGoogle Scholar
  123. 123.
    Martinet W, Verheye S, De Meyer GR (2007) Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy. Autophagy 3(3):241–244PubMedGoogle Scholar
  124. 124.
    Crazzolara R, Bradstock KF, Bendall LJ (2009) RAD001 (Everolimus) induces autophagy in acute lymphoblastic leukemia. Autophagy 5(5):727–728PubMedGoogle Scholar
  125. 125.
    Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340PubMedGoogle Scholar
  126. 126.
    Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. doi: 10.1038/nature08197 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi: 10.1038/nature05354 PubMedGoogle Scholar
  128. 128.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis 1:e10. doi: 10.1038/cddis.2009.8 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 6(1):186–188PubMedGoogle Scholar
  130. 130.
    Bursch W, Ellinger A, Kienzl H, Torok L, Pandey S, Sikorska M, Walker R, Hermann RS (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17(8):1595–1607PubMedGoogle Scholar
  131. 131.
    Cho KS, Yoon YH, Choi JA, Lee SJ, Koh JY (2012) Induction of autophagy and cell death by tamoxifen in cultured retinal pigment epithelial and photoreceptor cells. Invest Ophthalmol Vis Sci 53(9):5344–5353. doi: 10.1167/iovs.12-9827 PubMedGoogle Scholar
  132. 132.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314. doi: 10.1038/ncb1975 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Deepak Chhangani
    • 1
  • Sachin Chinchwadkar
    • 1
  • Amit Mishra
    • 1
    Email author
  1. 1.Cellular and Molecular Neurobiology Unit, Indian Institute of TechnologyJodhpurIndia

Personalised recommendations