Skip to main content

Advertisement

Log in

The Glycosphingolipid Hydrolases in the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glycosphingolipids are a large group of complex lipids particularly abundant in the outer layer of the neuronal plasma membranes. Qualitative and quantitative changes in glycosphingolipids have been reported along neuronal differentiation and aging. Their half-life is short in the nervous system and their membrane composition and content are the result of a complex network of metabolic pathways involving both the de novo synthesis in the Golgi apparatus and the lysosomal catabolism. In particular, most of the enzymes of glycosphingolipid biosynthesis and catabolism have been found also at the plasma membrane level. Their action could be responsible for the fine tuning of the plasma membrane glycosphingolipid composition allowing the formation of highly specialized membrane areas, such as the synapses and the axonal growth cones. While the correlation between the changes of GSL pattern and the modulation of the expression/activity of different glycosyltransferases during the neuronal differentiation has been widely discussed, the role of the glycohydrolytic enzymes in this process is still little explored. For this reason, in the present review, we focus on the main glycolipid catabolic enzymes β-hexosaminidases, sialidases, β-galactosidases, and β-glucocerebrosidases in the process of the neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PM:

Plasma membrane

GSL:

Glycosphingolipid

GalNAc:

N-acetyl-galactosaminide

Hex:

β-hexosaminidase

GnRH:

Gonadotropin-releasing hormone

RA:

Retinoic acid

MUG:

4-Methylumbelliferyl-N-acetyl-β-d-glucosaminide

MUGS:

4-Methylumbelliferyl-N-acetyl-β-d-glucosaminide-6-sulfate

MUB-Gal:

4-Methylumbelliferyl-β-d-galactopyranoside

NSCs:

Neuronal stem cells

GlcSph:

Glucosyl sphingosine

GlcCer:

Glucosyl ceramide

CBE:

Conduritol B epoxide

GD:

Gaucher disease

PD:

Parkinson disease

AMP-DNM:

N-(5-Adamantane-1-yl-methoxy)pentyl-deoxynojirimycin

KO:

Knockout

WT:

Wild type

CNS:

Central nervous system

SL:

Sphingolipid

Cer:

Ceramide

FBS:

Fetal bovine serum

References

  1. Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1–13

    Google Scholar 

  2. Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    PubMed  CAS  Google Scholar 

  3. Del Favero E, Brocca P, Motta S, Rondelli V, Sonnino S, Cantu L (2011) Nanoscale structural response of ganglioside-containing aggregates to the interaction with sialidase. J Neurochem 116:833–839

    PubMed  Google Scholar 

  4. Ira, Johnston LJ (2008) Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes. Biochim Biophys Acta 1778:185–197

    PubMed  CAS  Google Scholar 

  5. Svennerholm L, Bostrom K, Fredman P, Mansson JE, Rosengren B, Rynmark BM (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005:109–117

    PubMed  CAS  Google Scholar 

  6. Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829

    PubMed  CAS  Google Scholar 

  7. Irwin LN, Irwin CC (1982) Development changes and regional variation in the ganglioside composition of the rat hippocampus. Brain Res 256:481–485

    PubMed  CAS  Google Scholar 

  8. Kotani M, Terashima T, Tai T (1995) Developmental changes of ganglioside expressions in postnatal rat cerebellar cortex. Brain Res 700:40–58

    PubMed  CAS  Google Scholar 

  9. Kracun I, Rosner H, Drnovsek V, Vukelic Z, Cosovic C, Trbojevic-Cepe M, Kubat M (1992) Gangliosides in the human brain development and aging. Neurochem Int 20:421–431

    PubMed  CAS  Google Scholar 

  10. Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neuroscience 5:1647–1655

    PubMed  CAS  Google Scholar 

  11. Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341

    PubMed  CAS  Google Scholar 

  12. Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305

    PubMed  CAS  Google Scholar 

  13. Walkley SU, Siegel DA, Dobrenis K, Zervas M (1998) GM2 ganglioside as a regulator of pyramidal neuron dendritogenesis. Ann N Y Acad Sci 845:188–199

    PubMed  CAS  Google Scholar 

  14. Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713–18716

    PubMed  CAS  Google Scholar 

  15. Schnaar RL (1991) Glycosphingolipids in cell surface recognition. Glycobiology 1:477–485

    PubMed  CAS  Google Scholar 

  16. Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445

    PubMed  PubMed Central  Google Scholar 

  17. Roseman S (1970) The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 5:270–297

    PubMed  CAS  Google Scholar 

  18. Preti A, Fiorilli A, Lombardo A, Caimi L, Tettamanti G (1980) Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex. J Neurochem 35:281–296

    PubMed  CAS  Google Scholar 

  19. Miyagi T, Wada T, Iwamatsu A, Hata K, Yoshikawa Y, Tokuyama S, Sawada M (1999) Molecular cloning and characterization of a plasma membrane-associated sialidase specific for gangliosides. J Biol Chem 274:5004–5011

    PubMed  CAS  Google Scholar 

  20. Mencarelli S, Cavalieri C, Magini A, Tancini B, Basso L, Lemansky P, Hasilik A, Li YT, Chigorno V, Orlacchio A, Emiliani C, Sonnino S (2005) Identification of plasma membrane associated mature beta-hexosaminidase A, active towards GM2 ganglioside, in human fibroblasts. FEBS Lett 579:5501–5506

    PubMed  CAS  Google Scholar 

  21. Aureli M, Masilamani AP, Illuzzi G, Loberto N, Scandroglio F, Prinetti A, Chigorno V, Sonnino S (2009) Activity of plasma membrane beta-galactosidase and beta-glucosidase. FEBS Lett 583:2469–2473

    PubMed  CAS  Google Scholar 

  22. Schengrund CL, Rosenberg A (1970) Intracellular location and properties of bovine brain sialidase. J Biol Chem 245:6196–6200

    PubMed  CAS  Google Scholar 

  23. Tettamanti G, Morgan IG, Gombos G, Vincendon G, Mandel P (1972) Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res 47:515–518

    PubMed  CAS  Google Scholar 

  24. Tettamanti G, Preti A, Lombardo A, Suman T, Zambotti V (1975) Membrane-bound neuraminidase in the brain of different animals: behaviour of the enzyme on endogenous sialo derivatives and rationale for its assay. J Neurochem 25:451–456

    PubMed  CAS  Google Scholar 

  25. Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V (1973) Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta 306:466–477

    PubMed  CAS  Google Scholar 

  26. Triggs-Raine B, Mahuran DJ, Gravel RA (2001) Naturally occurring mutations in GM2 gangliosidosis: a compendium. Adv Genet 44:199–224

    PubMed  CAS  Google Scholar 

  27. Bearpark TM, Stirling JL (1978) A difference in the specificities of human liver N-acetyl-beta-hexosaminidases A and B detected by their activities towards glycosaminoglycan oligosaccharides. Biochem J 173:997–1000

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Kytzia HJ, Sandhoff K (1985) Evidence for two different active sites on human beta-hexosaminidase A. Interaction of GM2 activator protein with beta-hexosaminidase A. J Biol Chem 260:7568–7572

    PubMed  CAS  Google Scholar 

  29. Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases. Biochim Biophys Acta 1758:2057–2079

    PubMed  CAS  Google Scholar 

  30. Bateman KS, Cherney MM, Mahuran DJ, Tropak M, James MN (2011) Crystal structure of beta-hexosaminidase B in complex with pyrimethamine, a potential pharmacological chaperone. J Med Chem 54:1421–1429

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    PubMed  CAS  Google Scholar 

  32. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5:1–10

    PubMed  CAS  Google Scholar 

  33. Radovick S, Wray S, Lee E, Nicols DK, Nakayama Y, Weintraub BD, Westphal H, Cutler GB Jr, Wondisford FE (1991) Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice. Proc Natl Acad Sci U S A 88:3402–3406

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Aureli M, Bassi R, Loberto N, Regis S, Prinetti A, Chigorno V, Aerts JM, Boot RG, Filocamo M, Sonnino S (2012) Cell surface associated glycohydrolases in normal and Gaucher disease fibroblasts. J Inherit Metab Dis 35:1081–1091

    PubMed  CAS  Google Scholar 

  35. Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100:384–396

    PubMed  CAS  Google Scholar 

  36. Agholme L, Lindstrom T, Kagedal K, Marcusson J, Hallbeck M (2010) An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. J Alzheimers Dis 20:1069–1082

    PubMed  CAS  Google Scholar 

  37. Aureli M, Gritti A, Bassi R, Loberto N, Ricca A, Chigorno V, Prinetti A, Sonnino S (2011) Plasma membrane-associated glycohydrolases along differentiation of murine neural stem cells. Neurochem Res 37:1344–1354

    Google Scholar 

  38. Miyagi T, Sagawa J, Konno K, Handa S, Tsuiki S (1990) Biochemical and immunological studies on two distinct ganglioside-hydrolyzing sialidases from the particulate fraction of rat brain. J Biochem (Tokyo) 107:787–793

    CAS  Google Scholar 

  39. Miyagi T, Sagawa J, Konno K, Tsuiki S (1990) Immunological discrimination of intralysosomal, cytosolic, and two membrane sialidases present in rat tissues. J Biochem (Tokyo) 107:794–798

    CAS  Google Scholar 

  40. Miyagi T, Tsuiki S (1986) Evidence for sialidase hydrolyzing gangliosides GM2 and GM1 in rat liver plasma membrane. FEBS Lett 206:223–228

    PubMed  CAS  Google Scholar 

  41. D'Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H (1982) Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci U S A 79:4535–4539

    PubMed  PubMed Central  Google Scholar 

  42. Fanzani A, Colombo F, Giuliani R, Preti A, Marchesini S (2004) Cytosolic sialidase Neu2 upregulation during PC12 cells differentiation. FEBS Lett 566:178–182

    PubMed  CAS  Google Scholar 

  43. Kopitz J, von Reitzenstein C, Muhl C, Cantz M (1994) Role of plasma membrane ganglioside sialidase of human neuroblastoma cells in growth control and differentiation. Biochem Biophys Res Commun 199:1188–1193

    PubMed  CAS  Google Scholar 

  44. Monti E, Preti A, Venerando B, Borsani G (2002) Recent development in mammalian sialidase molecular biology. Neurochem Res 27:649–663

    PubMed  CAS  Google Scholar 

  45. Miyagi T, Wada T, Yamaguchi K (2008) Roles of plasma membrane-associated sialidase NEU3 in human cancers. Biochim Biophys Acta 1780:532–537

    PubMed  CAS  Google Scholar 

  46. Miyagi T, Wada T, Yamaguchi K, Hata K, Shiozaki K (2008) Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem 144:279–285

    PubMed  CAS  Google Scholar 

  47. Ueno S, Saito S, Wada T, Yamaguchi K, Satoh M, Arai Y, Miyagi T (2006) Plasma membrane-associated sialidase is up-regulated in renal cell carcinoma and promotes interleukin-6-induced apoptosis suppression and cell motility. J Biol Chem 281:7756–7764

    PubMed  CAS  Google Scholar 

  48. Kakugawa Y, Wada T, Yamaguchi K, Yamanami H, Ouchi K, Sato I, Miyagi T (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci U S A 99:10718–10723

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Venerando B, Fiorilli A, Croci G, Tringali C, Goi G, Mazzanti L, Curatola G, Segalini G, Massaccesi L, Lombardo A, Tettamanti G (2002) Acidic and neutral sialidase in the erythrocyte membrane of type 2 diabetic patients. Blood 99:1064–1070

    PubMed  CAS  Google Scholar 

  50. Tringali C, Anastasia L, Papini N, Bianchi A, Ronzoni L, Cappellini MD, Monti E, Tettamanti G, Venerando B (2007) Modification of sialidase levels and sialoglycoconjugate pattern during erythroid and erytroleukemic cell differentiation. Glycoconj J 24:67–79

    PubMed  CAS  Google Scholar 

  51. Tringali C, Lupo B, Anastasia L, Papini N, Monti E, Bresciani R, Tettamanti G, Venerando B (2007) Expression of sialidase Neu2 in leukemic K562 cells induces apoptosis by impairing Bcr-Abl/Src kinases signaling. J Biol Chem 282:14364–14372

    PubMed  CAS  Google Scholar 

  52. Chigorno V, Cardace G, Pitto M, Sonnino S, Ghidoni R, Tettamanti G (1986) A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Anal Biochem 153:283–294

    PubMed  CAS  Google Scholar 

  53. Schengrund CL, Repman MA (1982) Density-dependent changes in gangliosides and sialidase activity of murine neuroblastoma cells. J Neurochem 39:940–947

    PubMed  CAS  Google Scholar 

  54. Valaperta R, Chigorno V, Basso L, Prinetti A, Bresciani R, Preti A, Miyagi T, Sonnino S (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229

    PubMed  CAS  Google Scholar 

  55. Valaperta R, Valsecchi M, Rocchetta F, Aureli M, Prioni S, Prinetti A, Chigorno V, Sonnino S (2007) Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem 100:708–719

    PubMed  CAS  Google Scholar 

  56. Proshin S, Yamaguchi K, Wada T, Miyagi T (2002) Modulation of neuritogenesis by ganglioside-specific sialidase (Neu 3) in human neuroblastoma NB-1 cells. Neurochem Res 27:841–846

    PubMed  CAS  Google Scholar 

  57. Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778

    CAS  Google Scholar 

  58. von Reitzenstein C, Kopitz J, Schuhmann V, Cantz M (2001) Differential functional relevance of a plasma membrane ganglioside sialidase in cholinergic and adrenergic neuroblastoma cell lines. Eur J Biochem 268:326–333

    Google Scholar 

  59. Aureli M, Loberto N, Lanteri P, Chigorno V, Prinetti A, Sonnino S (2011) Cell surface sphingolipid glycohydrolases in neuronal differentiation and aging in culture. J Neurochem 116:891–899

    PubMed  CAS  Google Scholar 

  60. Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395

    PubMed  CAS  Google Scholar 

  61. Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615

    PubMed  Google Scholar 

  62. Kalka D, von Reitzenstein C, Kopitz J, Cantz M (2001) The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 283:989–993

    PubMed  CAS  Google Scholar 

  63. Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, Miyagi T, Preti A, Prinetti A, Prioni S, Sonnino S, Tettamanti G, Venerando B, Monti E (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279:16989–16995

    PubMed  CAS  Google Scholar 

  64. Yamaguchi K, Hata K, Koseki K, Shiozaki K, Akita H, Wada T, Moriya S, Miyagi T (2005) Evidence for mitochondrial localization of a novel human sialidase (NEU4). Biochem J 390:85–93

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Comelli EM, Amado M, Lustig SR, Paulson JC (2003) Identification and expression of Neu4, a novel murine sialidase. Gene 321:155–161

    PubMed  CAS  Google Scholar 

  66. Shiozaki K, Koseki K, Yamaguchi K, Shiozaki M, Narimatsu H, Miyagi T (2009) Developmental change of sialidase neu4 expression in murine brain and its involvement in the regulation of neuronal cell differentiation. J Biol Chem 284:21157–21164

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Seyrantepe V, Canuel M, Carpentier S, Landry K, Durand S, Liang F, Zeng J, Caqueret A, Gravel RA, Marchesini S, Zwingmann C, Michaud J, Morales CR, Levade T, Pshezhetsky AV (2008) Mice deficient in Neu4 sialidase exhibit abnormal ganglioside catabolism and lysosomal storage. Hum Mol Genet 17:1556–1568

    PubMed  CAS  Google Scholar 

  68. Seyrantepe V, Lema P, Caqueret A, Dridi L, Bel Hadj S, Carpentier S, Boucher F, Levade T, Carmant L, Gravel RA, Hamel E, Vachon P, Di Cristo G, Michaud JL, Morales CR, Pshezhetsky AV (2010) Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss. PLoS Genet 6:e1001118

    PubMed  PubMed Central  Google Scholar 

  69. Li YT, Li SC (1999) Enzymatic hydrolysis of glycosphingolipids. Anal Biochem 273:1–11

    PubMed  CAS  Google Scholar 

  70. Xu YH, Barnes S, Sun Y, Grabowski GA (2010) Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 51:1643–1675

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Coates PJ (2002) Markers of senescence? J Pathol 196:371–373

    PubMed  Google Scholar 

  72. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ (2000) Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res 257:162–171

    PubMed  CAS  Google Scholar 

  73. Geng YQ, Guan JT, Xu XH, Fu YC (2010) Senescence-associated beta-galactosidase activity expression in aging hippocampal neurons. Biochem Biophys Res Commun 396:866–869

    PubMed  CAS  Google Scholar 

  74. Evans MK, Taffe BG, Harris CC, Bohr VA (1993) DNA strand bias in the repair of the p53 gene in normal human and xeroderma pigmentosum group C fibroblasts. Cancer Res 53:5377–5381

    PubMed  CAS  Google Scholar 

  75. Huang Q, Shur BD, Begovac PC (1995) Overexpressing cell surface beta 1.4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin. J Cell Sci 108(Pt 2):839–847

    PubMed  CAS  Google Scholar 

  76. Neufeld EB, Cooney AM, Pitha J, Dawidowicz EA, Dwyer NK, Pentchev PG, Blanchette-Mackie EJ (1996) Intracellular trafficking of cholesterol monitored with a cyclodextrin. J Biol Chem 271:21604–21613

    PubMed  CAS  Google Scholar 

  77. van Weely S, Brandsma M, Strijland A, Tager JM, Aerts JM (1993) Demonstration of the existence of a second, non-lysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta 1181:55–62

    PubMed  Google Scholar 

  78. Daniels LB, Coyle PJ, Chiao YB, Glew RH, Labow RS (1981) Purification and characterization of a cytosolic broad specificity beta-glucosidase from human liver. J Biol Chem 256:13004–13013

    PubMed  CAS  Google Scholar 

  79. Dekker N, Voorn-Brouwer T, Verhoek M, Wennekes T, Narayan RS, Speijer D, Hollak CE, Overkleeft HS, Boot RG, Aerts JM (2011) The cytosolic beta-glucosidase GBA3 does not influence type 1 Gaucher disease manifestation. Blood Cells Mol Dis 46:19–26

    PubMed  CAS  Google Scholar 

  80. Nilsson O, Svennerholm L (1982) Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J Neurochem 39:709–718

    PubMed  CAS  Google Scholar 

  81. de Fost M, Aerts JM, Hollak CE (2003) Gaucher disease: from fundamental research to effective therapeutic interventions. Neth J Med 61:3–8

    PubMed  Google Scholar 

  82. Sidransky E (2005) Gaucher disease and parkinsonism. Mol Genet Metab 84:302–304

    PubMed  CAS  Google Scholar 

  83. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Durr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, Marder K, Mata IF, Mirelman A, Mitsui J, Mizuta I, Nicoletti G, Oliveira C, Ottman R, Orr-Urtreger A, Pereira LV, Quattrone A, Rogaeva E, Rolfs A, Rosenbaum H, Rozenberg R, Samii A, Samaddar T, Schulte C, Sharma M, Singleton A, Spitz M, Tan EK, Tayebi N, Toda T, Troiano AR, Tsuji S, Wittstock M, Wolfsberg TG, Wu YR, Zabetian CP, Zhao Y, Ziegler SG (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 361:1651–1661

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, Sidransky E, Grabowski GA, Krainc D (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Yap TL, Velayati A, Sidransky E, Lee JC (2013) Membrane-bound alpha-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab 108:56–64

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Martin E, Schule R, Smets K, Rastetter A, Boukhris A, Loureiro JL, Gonzalez MA, Mundwiller E, Deconinck T, Wessner M, Jornea L, Oteyza AC, Durr A, Martin JJ, Schols L, Mhiri C, Lamari F, Zuchner S, De Jonghe P, Kabashi E, Brice A, Stevanin G (2013) Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet 92:238–244

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Korschen HG, Yildiz Y, Raju DN, Schonauer S, Bonigk W, Jansen V, Kremmer E, Kaupp UB, Wachten D (2012) The non-lysosomal beta-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem 288:3381–3393

    PubMed  PubMed Central  Google Scholar 

  88. Boot RG, Verhoek M, Donker-Koopman W, Strijland A, van Marle J, Overkleeft HS, Wennekes T, Aerts JM (2007) Identification of the non-lysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 282:1305–1312

    PubMed  CAS  Google Scholar 

  89. Matern H, Boermans H, Lottspeich F, Matern S (2001) Molecular cloning and expression of human bile acid beta-glucosidase. J Biol Chem 276:37929–37933

    PubMed  CAS  Google Scholar 

  90. Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, Hammer RE, Hamra FK, Matern S, Russell DW (2006) Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116:2985–2994

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Hammer MB, Eleuch-Fayache G, Schottlaender LV, Nehdi H, Gibbs JR, Arepalli SK, Chong SB, Hernandez DG, Sailer A, Liu G, Mistry PK, Cai H, Shrader G, Sassi C, Bouhlal Y, Houlden H, Hentati F, Amouri R, Singleton AB (2013) Mutations in GBA2 cause autosomal-recessive cerebellar ataxia with spasticity. Am J Hum Genet 92:245–251

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Ferreirinha F, Quattrini A, Pirozzi M, Valsecchi V, Dina G, Broccoli V, Auricchio A, Piemonte F, Tozzi G, Gaeta L, Casari G, Ballabio A, Rugarli EI (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Soderblom C, Stadler J, Jupille H, Blackstone C, Shupliakov O, Hanna MC (2010) Targeted disruption of the Mast syndrome gene SPG21 in mice impairs hind limb function and alters axon branching in cultured cortical neurons. Neurogenetics 11:369–378

    PubMed  Google Scholar 

  94. Scandroglio F, Loberto N, Valsecchi M, Chigorno V, Prinetti A, Sonnino S (2009) Thin layer chromatography of gangliosides. Glycoconj J 26:961–973

    PubMed  CAS  Google Scholar 

  95. Loberto N, Prioni S, Bettiga A, Chigorno V, Prinetti A, Sonnino S (2005) The membrane environment of endogenous cellular prion protein in primary rat cerebellar neurons. J Neurochem 95:771–783

    PubMed  CAS  Google Scholar 

  96. Prinetti A, Bassi R, Riboni L, Tettamanti G (1997) Involvement of a ceramide activated protein phosphatase in the differentiation of neuroblastoma Neuro2a cells. FEBS Lett 414:475–479

    PubMed  CAS  Google Scholar 

  97. Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44

    PubMed  CAS  Google Scholar 

  98. Yu RK, Bieberich E, Xia T, Zeng G (2004) Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res 45:783–793

    PubMed  CAS  Google Scholar 

  99. Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145

    PubMed  CAS  Google Scholar 

  100. Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71:21–45

    PubMed  CAS  Google Scholar 

  101. Brocca P, Sonnino S (1997) Dynamic and spatial organization of surface gangliosides. Trends Glycosci Glyc 9:433–445

    CAS  Google Scholar 

  102. Prinetti A, Chigorno V, Tettamanti G, Sonnino S (2000) Sphingolipid-enriched membrane domains from rat cerebellar granule cells differentiated in culture. A compositional study. J Biol Chem 275:11658–11665

    PubMed  CAS  Google Scholar 

  103. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270:30701–30708

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Sonnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aureli, M., Samarani, M., Loberto, N. et al. The Glycosphingolipid Hydrolases in the Central Nervous System. Mol Neurobiol 50, 76–87 (2014). https://doi.org/10.1007/s12035-013-8592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8592-6

Keywords

Navigation