Molecular Neurobiology

, Volume 49, Issue 3, pp 1117–1125 | Cite as

Wnt Signaling in Remyelination in Multiple Sclerosis: Friend or Foe?

  • Chong Xie
  • Zezhi Li
  • Guang-Xian ZhangEmail author
  • Yangtai GuanEmail author


Myelination is critical to normal functioning of the vertebrate nervous system. In demyelinating diseases such as multiple sclerosis, oligodendrocytes, the myelinating cells in the central nervous system, are targeted, resulting in myelin loss, axonal damage, and severe functional impairment. While spontaneous remyelination has been proven a failure in multiple sclerosis, understanding the molecular mechanism underlying oligodendrocyte biology, myelination, and remyelination becomes crucial. To date, a series of signaling pathways in regulating oligodendrocyte development and remyelination have been suggested and, among them, the Wnt/β-catenin/Tcf pathway has been considered a negative factor in the myelinating process. However, this notion has been challenged by recent studies, which showed a pro-myelinating effect of this pathway. This review summarizes the current contradictory concepts concerning the role of the Wnt pathway in the oligodendrocyte development and remyelination process, attempts to address the potential mechanism underlying this controversy, and recommends caution in targeting the Wnt pathway as a potential demyelinating therapy.


Wnt signaling Oligodendrocytes Remyelination Multiple sclerosis 



This work was supported by the National Natural Science Foundations of China (81230027, 81070959) and Key Scientific and Technological Project of Shanghai (11411950300). We thank Katherine Regan for the editorial assistance.

Conflict of Interest

The authors have no conflict of interest.


  1. 1.
    Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T (2009) Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 72(22):1914–1921. doi: 10.1212/WNL.0b013e3181a8260a PubMedCrossRefGoogle Scholar
  2. 2.
    Stadelmann C, Bruck W (2008) Interplay between mechanisms of damage and repair in multiple sclerosis. J Neurol 255(Suppl 1):12–18. doi: 10.1007/s00415-008-1003-7 PubMedCrossRefGoogle Scholar
  3. 3.
    Maurer M, Dachsel R, Domke S, Ries S, Reifschneider G, Friedrich A, Knorn P, Landefeld H, Niemczyk G, Schicklmaier P, Wernsdorfer C, Windhagen S, Albrecht H, Schwab S (2011) Health care situation of patients with relapsing-remitting multiple sclerosis receiving immunomodulatory therapy: a retrospective survey of more than 9000 German patients with MS. Eur J Neurol 18(8):1036–1045. doi: 10.1111/j.1468-1331.2010.03313.x PubMedCrossRefGoogle Scholar
  4. 4.
    Remington GM, Treadaway K, Frohman T, Salter A, Stuve O, Racke MK, Hawker K, Agosta F, Sormani MP, Filippi M, Frohman EM (2010) A one-year prospective, randomized, placebo-controlled, quadruple-blinded, phase II safety pilot trial of combination therapy with interferon beta-1a and mycophenolate mofetil in early relapsing-remitting multiple sclerosis (TIME MS). Ther Adv Neurol Disord 3(1):3–13. doi: 10.1177/1756285609355851 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Fazekas F, Strasser-Fuchs S, Hommes OR (2007) Intravenous immunoglobulin in MS: promise or failure? J Neurol Sci 259(1–2):61–66. doi: 10.1016/j.jns.2006.12.018 PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffmann V, Kuhn W, Schimrigk S, Islamova S, Hellwig K, Lukas C, Brune N, Pohlau D, Przuntek H, Muller T (2006) Repeat intrathecal triamcinolone acetonide application is beneficial in progressive MS patients. Eur J Neurol 13(1):72–76. doi: 10.1111/j.1468-1331.2006.01145.x PubMedCrossRefGoogle Scholar
  7. 7.
    Polman C, Barkhof F, Sandberg-Wollheim M, Linde A, Nordle O, Nederman T (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64(6):987–991. doi: 10.1212/01.WNL.0000154520.48391.69 PubMedCrossRefGoogle Scholar
  8. 8.
    Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27(3):247–254. doi: 10.1016/j.mcn.2004.06.015 PubMedCrossRefGoogle Scholar
  9. 9.
    Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJ (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6(6):578–590. doi: 10.1016/j.stem.2010.04.002 PubMedCrossRefGoogle Scholar
  10. 10.
    van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214. doi: 10.1242/dev.033910 PubMedCrossRefGoogle Scholar
  11. 11.
    Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423(6938):448–452. doi: 10.1038/nature01611 PubMedCrossRefGoogle Scholar
  12. 12.
    Bejsovec A (2005) Wnt pathway activation: new relations and locations. Cell 120(1):11–14. doi: 10.1016/j.cell.2004.12.021 PubMedGoogle Scholar
  13. 13.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126 PubMedCrossRefGoogle Scholar
  14. 14.
    Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating beta-catenin. Proc Natl Acad Sci U S A 108(5):1937–1942. doi: 10.1073/pnas.1017063108 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Hutchins BI, Li L, Kalil K (2012) Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. Sci Signal 5(206):pt1. doi: 10.1126/scisignal.2002523 PubMedCrossRefGoogle Scholar
  16. 16.
    Ciani L, Boyle KA, Dickins E, Sahores M, Anane D, Lopes DM, Gibb AJ, Salinas PC (2011) Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca(2)(+)/Calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 108(26):10732–10737. doi: 10.1073/pnas.1018132108 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lee MA, Park HJ, Chung HJ, Kim WK, Lee SK (2013) Antitumor activity of 2-hydroxycinnamaldehyde for human colon cancer cells through suppression of beta-catenin signaling. J Nat Prod. doi: 10.1021/np400216m PubMedCentralGoogle Scholar
  18. 18.
    Avasarala S, Van Scoyk M, Wang J, Sechler M, Vandervest K, Brzezinski C, Weekes C, Edwards MG, Arcaroli J, Davis RE, Bikkavilli RK, Winn RA (2013) hsa-miR29b, a critical downstream target of non-canonical Wnt signaling, plays an anti-proliferative role in non-small cell lung cancer cells via targeting MDM2 expression. Biol Open 2(7):675–685. doi: 10.1242/bio.20134507 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, Qiu F, Lin J (2013) miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. The FEBS journal. doi: 10.1111/febs.12417 Google Scholar
  20. 20.
    Julio MK, Shibata M, Desai N, Reynon M, Halili MV, Hu YP, Price SM, Abate-Shen C, Shen MM (2013) Canonical Wnt signaling regulates Nkx3.1 expression and luminal epithelial differentiation during prostate organogenesis. Dev Dynam. doi: 10.1002/dvdy.24008 Google Scholar
  21. 21.
    Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A (2013) Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun 14(2):67–82. doi: 10.1038/gene.2012.55 PubMedCrossRefGoogle Scholar
  22. 22.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. doi: 10.1038/nature04108 PubMedCrossRefGoogle Scholar
  23. 23.
    Azim K, Butt AM (2011) GSK3beta negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59(4):540–553. doi: 10.1002/glia.21122 PubMedCrossRefGoogle Scholar
  24. 24.
    Feigenson K, Reid M, See J, Crenshaw IE, Grinspan JB (2011) Canonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation. ASN Neuro 3(3):e00061. doi: 10.1042/AN20110004 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Memezawa A, Takada I, Takeyama K, Igarashi M, Ito S, Aiba S, Kato S, Kouzmenko AP (2007) Id2 gene-targeted crosstalk between Wnt and retinoid signaling regulates proliferation in human keratinocytes. Oncogene 26(35):5038–5045. doi: 10.1038/sj.onc.1210320 PubMedCrossRefGoogle Scholar
  26. 26.
    Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487. doi: 10.1126/science.1094291 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585. doi: 10.1101/gad.1806309 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR (2009) HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12(7):829–838. doi: 10.1038/nn.2333 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130. doi: 10.1523/JNEUROSCI.3467-12.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Chew LJ, Shen W, Ming X, Senatorov VV Jr, Chen HL, Cheng Y, Hong E, Knoblach S, Gallo V (2011) SRY-box containing gene 17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 31(39):13921–13935. doi: 10.1523/JNEUROSCI.3343-11.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sohn J, Natale J, Chew LJ, Belachew S, Cheng Y, Aguirre A, Lytle J, Nait-Oumesmar B, Kerninon C, Kanai-Azuma M, Kanai Y, Gallo V (2006) Identification of Sox17 as a transcription factor that regulates oligodendrocyte development. J Neurosci 26(38):9722–9735. doi: 10.1523/JNEUROSCI.1716-06.2006 PubMedCrossRefGoogle Scholar
  32. 32.
    Chen HL, Chew LJ, Packer RJ, Gallo V (2013) Modulation of the Wnt/beta-catenin pathway in human oligodendroglioma cells by Sox17 regulates proliferation and differentiation. Cancer Lett 335(2):361–371. doi: 10.1016/j.canlet.2013.02.058 PubMedCrossRefGoogle Scholar
  33. 33.
    Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, van de Wetering M, Clevers H, Schlag PM, Birchmeier W, Behrens J (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22(4):1184–1193PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Zeng YA, Nusse R (2010) Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 6(6):568–577. doi: 10.1016/j.stem.2010.03.020 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F (2002) Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, Kuhl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science 280(5363):596–599PubMedCrossRefGoogle Scholar
  37. 37.
    Fancy SP, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE, Bruce CC, Otero JJ, Huang EJ, Nusse R, Franklin RJ, Rowitch DH (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14(8):1009–1016. doi: 10.1038/nn.2855 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620. doi: 10.1038/nature08356 PubMedCrossRefGoogle Scholar
  39. 39.
    Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8(1):95–102PubMedCrossRefGoogle Scholar
  40. 40.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. doi: 10.1016/j.cell.2006.10.018 PubMedCrossRefGoogle Scholar
  41. 41.
    He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 55(2):217–230. doi: 10.1016/j.neuron.2007.06.029 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kawasoe T, Furukawa Y, Daigo Y, Nishiwaki T, Ishiguro H, Fujita M, Satoh S, Miwa N, Nagasawa Y, Miyoshi Y, Ogawa M, Nakamura Y (2000) Isolation and characterization of a novel human gene, DRCTNNB1A, the expression of which is down-regulated by beta-catenin. Cancer Res 60(13):3354–3358PubMedGoogle Scholar
  43. 43.
    Zara F, Biancheri R, Bruno C, Bordo L, Assereto S, Gazzerro E, Sotgia F, Wang XB, Gianotti S, Stringara S, Pedemonte M, Uziel G, Rossi A, Schenone A, Tortori-Donati P, van der Knaap MS, Lisanti MP, Minetti C (2006) Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat Genet 38(10):1111–1113. doi: 10.1038/ng1870 PubMedCrossRefGoogle Scholar
  44. 44.
    Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ, Casaccia-Bonnefil P (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11(9):1024–1034. doi: 10.1038/nn.2172 PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Jacob C, Lebrun-Julien F, Suter U (2011) How histone deacetylases control myelination. Mol Neurobiol 44(3):303–312. doi: 10.1007/s12035-011-8198-9 PubMedCrossRefGoogle Scholar
  46. 46.
    Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 6(12):945–954. doi: 10.1038/nrn1805 PubMedCrossRefGoogle Scholar
  47. 47.
    Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82(6):969–979PubMedCrossRefGoogle Scholar
  48. 48.
    See JM, Grinspan JB (2009) Sending mixed signals: bone morphogenetic protein in myelination and demyelination. J Neuropathol Exp Neurol 68(6):595–604. doi: 10.1097/NEN.0b013e3181a66ad9 PubMedCrossRefGoogle Scholar
  49. 49.
    Samanta J, Kessler JA (2004) Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131(17):4131–4142. doi: 10.1242/dev.01273 PubMedCrossRefGoogle Scholar
  50. 50.
    Cheng X, Wang Y, He Q, Qiu M, Whittemore SR, Cao Q (2007) Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells. Stem Cells 25(12):3204–3214. doi: 10.1634/stemcells.2007-0284 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Hampton DW, Asher RA, Kondo T, Steeves JD, Ramer MS, Fawcett JW (2007) A potential role for bone morphogenetic protein signalling in glial cell fate determination following adult central nervous system injury in vivo. Eur J Neurosci 26(11):3024–3035. doi: 10.1111/j.1460-9568.2007.05940.x PubMedCrossRefGoogle Scholar
  52. 52.
    Kim NC, Marques G (2010) Identification of downstream targets of the bone morphogenetic protein pathway in the Drosophila nervous system. Dev Dynam 239(9):2413–2425. doi: 10.1002/dvdy.22368 CrossRefGoogle Scholar
  53. 53.
    Wu M, Hernandez M, Shen S, Sabo JK, Kelkar D, Wang J, O’Leary R, Phillips GR, Cate HS, Casaccia P (2012) Differential modulation of the oligodendrocyte transcriptome by sonic hedgehog and bone morphogenetic protein 4 via opposing effects on histone acetylation. J Neurosci 32(19):6651–6664. doi: 10.1523/JNEUROSCI.4876-11.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Weng Q, Chen Y, Wang H, Xu X, Yang B, He Q, Shou W, Chen Y, Higashi Y, van den Berghe V, Seuntjens E, Kernie SG, Bukshpun P, Sherr EH, Huylebroeck D, Lu QR (2012) Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73(4):713–728. doi: 10.1016/j.neuron.2011.12.021 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Ortega F, Gascon S, Masserdotti G, Deshpande A, Simon C, Fischer J, Dimou L, Chichung Lie D, Schroeder T, Berninger B (2013) Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. Nat Cell Biol 15(6):602–613. doi: 10.1038/ncb2736 PubMedCrossRefGoogle Scholar
  56. 56.
    Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD, Nusse R (2008) Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci U S A 105(44):16970–16975. doi: 10.1073/pnas.0808616105 PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T, Li H, Ghandour S, Schumacher M, Massaad C (2011) Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 31(10):3729–3742. doi: 10.1523/JNEUROSCI.4270-10.2011 PubMedCrossRefGoogle Scholar
  58. 58.
    Fu H, Cai J, Clevers H, Fast E, Gray S, Greenberg R, Jain MK, Ma Q, Qiu M, Rowitch DH, Taylor CM, Stiles CD (2009) A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 29(36):11399–11408. doi: 10.1523/JNEUROSCI.0160-09.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Fu H, Kesari S, Cai J (2012) Tcf7l2 is tightly controlled during myelin formation. Cell Mol Neurobiol 32(3):345–352. doi: 10.1007/s10571-011-9778-y PubMedCrossRefGoogle Scholar
  60. 60.
    Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E, Garren H, Langer-Gould A, Strober S, Cannella B, Allard J, Klonowski P, Austin A, Lad N, Kaminski N, Galli SJ, Oksenberg JR, Raine CS, Heller R, Steinman L (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8(5):500–508. doi: 10.1038/nm0502-500 PubMedCrossRefGoogle Scholar
  61. 61.
    Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081. doi: 10.1038/nature06559 PubMedCrossRefGoogle Scholar
  62. 62.
    Nickles D, Chen HP, Li MM, Khankhanian P, Madireddy L, Caillier SJ, Santaniello A, Cree BA, Pelletier D, Hauser SL, Oksenberg JR, Baranzini SE (2013) Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Hum Mol Genet. doi: 10.1093/hmg/ddt267 PubMedGoogle Scholar
  63. 63.
    Galimberti D, Macmurray J, Scalabrini D, Fenoglio C, De Riz M, Comi C, Comings D, Cortini F, Villa C, Serpente M, Cantoni C, Ridolfi E, Fardipoor MH, Leone M, Monaco F, Bresolin N, Scarpini E (2011) GSK3beta genetic variability in patients with multiple sclerosis. Neurosci Lett 497(1):46–48. doi: 10.1016/j.neulet.2011.04.024 PubMedCrossRefGoogle Scholar
  64. 64.
    De Sarno P, Axtell RC, Raman C, Roth KA, Alessi DR, Jope RS (2008) Lithium prevents and ameliorates experimental autoimmune encephalomyelitis. J Immunol 181(1):338–345PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Yuan S, Shi Y, Tang SJ (2012) Wnt signaling in the pathogenesis of multiple sclerosis-associated chronic pain. J Neuroimmune Pharmacol 7(4):904–913. doi: 10.1007/s11481-012-9370-3 PubMedCrossRefGoogle Scholar
  66. 66.
    Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun. doi: 10.1016/j.jaut.2013.06.008 PubMedGoogle Scholar
  67. 67.
    Yu Q, Sharma A, Oh SY, Moon HG, Hossain MZ, Salay TM, Leeds KE, Du H, Wu B, Waterman ML, Zhu Z, Sen JM (2009) T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol 10(9):992–999. doi: 10.1038/ni.1762 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Oestreich KJ, Huang AC, Weinmann AS (2011) The lineage-defining factors T-bet and Bcl-6 collaborate to regulate Th1 gene expression patterns. J Exp Med 208(5):1001–1013. doi: 10.1084/jem.20102144 PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Ma J, Wang R, Fang X, Ding Y, Sun Z (2011) Critical role of TCF-1 in repression of the IL-17 gene. PLoS One 6(9):e24768. doi: 10.1371/journal.pone.0024768 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Chen H, Hsu L, Shia Y, Lin M, Lin C (2012) The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. Biochem Pharmacol 84(9):1143–1153PubMedCrossRefGoogle Scholar
  71. 71.
    Wu Y, Zhang Y, Zhang H, Yang X, Wang Y, Ren F, Liu H, Zhai Y, Jia B, Yu J, Chang Z (2010) p15RS attenuates Wnt/{beta}-catenin signaling by disrupting {beta}-catenin.TCF4 Interaction. J Biol Chem 285(45):34621–34631. doi: 10.1074/jbc.M110.148791 PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Mindo S (2010) Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res 70(10):4233–4242. doi: 10.1158/0008-5472.CAN-09-3470 PubMedCrossRefGoogle Scholar
  73. 73.
    Kuhlmann T, Miron V, Cui Q, Wegner C, Antel J, Bruck W (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(Pt 7):1749–1758. doi: 10.1093/brain/awn096 PubMedCrossRefGoogle Scholar
  74. 74.
    Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173. doi: 10.1056/NEJMoa010994 PubMedCrossRefGoogle Scholar
  75. 75.
    Wolswijk G (2002) Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain 125(Pt 2):338–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Neurology, Changhai HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations