Skip to main content

Switching Responses: Spatial and Temporal Regulators of Axon Guidance

Abstract

The ability of the axonal growth cone to switch between attraction and repulsion in response to guidance cues in the extracellular environment during nervous system development is fundamental to the precise wiring of complex neural circuits. Regulation of cell-surface receptors by means of transcriptional control, local translation, trafficking and proteolytic processing are powerful mechanisms to regulate the response of the growth cone. Important work has also revealed how intracellular signalling pathways, including calcium and cyclic nucleotide signalling, can alter the directional response elicited by a particular cue. Here, we describe how these multiple regulatory mechanisms influence growth cone turning behaviour. We focus on recent evidence that suggests a significant role for 14-3-3 adaptor proteins in modifying growth cone turning behaviour and mediating directional polarity switches during development. Characterizing how 14-3-3 s regulate growth cone signalling will provide invaluable insight into nervous system development and may facilitate the identification of novel targets for promoting nerve regeneration following injury.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3 (6). doi: 10.1101/cshperspect.a001727

  2. Dent EW, Gupton SL, Gertler FB (2011) The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3 (3). doi: 10.1101/cshperspect.a001800

  3. Vitriol Eric A, Zheng James Q (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73(6):1068–1081. doi:10.1016/j.neuron.2012.03.005

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274(5290):1123–1133

    CAS  PubMed  Article  Google Scholar 

  5. Bashaw GJ, Klein R (2010) Signaling from axon guidance receptors. Cold Spring Harb Perspect Biol 2(5):a001941. doi:10.1101/cshperspect.a001941

    PubMed Central  PubMed  Article  Google Scholar 

  6. Dudanova I, Klein R (2013) Integration of guidance cues: parallel signaling and crosstalk. Trends Neurosci 36(5):295–304. doi:10.1016/j.tins.2013.01.007

    CAS  PubMed  Article  Google Scholar 

  7. Castellani V (2013) Building spinal and brain commissures: axon guidance at the midline. ISRN Cell Biol. doi:10.1155/2013/315387

    Google Scholar 

  8. Hornberg H, Holt C (2013) RNA-binding proteins and translational regulation in axons and growth cones. Front Neurosci 7:81. doi:10.3389/fnins.2013.00081

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Yang T, Terman JR (2013) Regulating small G protein signaling to coordinate axon adhesion and repulsion. Small GTPases 4(1):34–41. doi:10.4161/sgtp.22765

    PubMed Central  PubMed  Article  Google Scholar 

  10. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78(3):409–424

    CAS  PubMed  Article  Google Scholar 

  11. Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M (1996) Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87(2):175–185

    CAS  PubMed  Article  Google Scholar 

  12. Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291(5510):1928–1938. doi:10.1126/science.1058445

    CAS  PubMed  Article  Google Scholar 

  13. Sabatier C, Plump AS, Le M, Brose K, Tamada A, Murakami F, Lee EY, Tessier-Lavigne M (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117(2):157–169

    CAS  PubMed  Article  Google Scholar 

  14. Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58(3):325–332. doi:10.1016/j.neuron.2008.02.016

    CAS  PubMed  Article  Google Scholar 

  15. Leonardo ED, Hinck L, Masu M, Keino-Masu K, Ackerman SL, Tessier-Lavigne M (1997) Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386(6627):833–838. doi:10.1038/386833a0

    CAS  PubMed  Article  Google Scholar 

  16. Burgess RW, Jucius TJ, Ackerman SL (2006) Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 26(21):5756–5766. doi:10.1523/JNEUROSCI.0736-06.2006

    CAS  PubMed  Article  Google Scholar 

  17. Hong K, Hinck L, Nishiyama M, Poo MM, Tessier-Lavigne M, Stein E (1999) A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97(7):927–941

    CAS  PubMed  Article  Google Scholar 

  18. Keleman K, Dickson BJ (2001) Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32(4):605–617

    CAS  PubMed  Article  Google Scholar 

  19. Zarin AA, Asadzadeh J, Labrador JP (2013) Transcriptional regulation of guidance at the midline and in motor circuits. Cell Mol Life Sci. doi:10.1007/s00018-013-1434-x

    PubMed  Google Scholar 

  20. Polleux F, Ince-Dunn G, Ghosh A (2007) Transcriptional regulation of vertebrate axon guidance and synapse formation. Nat Rev Neurosci 8(5):331–340. doi:10.1038/nrn2118

    CAS  PubMed  Article  Google Scholar 

  21. Brittis PA, Lu Q, Flanagan JG (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110(2):223–235

    CAS  PubMed  Article  Google Scholar 

  22. Colak D, Ji SJ, Porse BT, Jaffrey SR (2013) Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell 153(6):1252–1265. doi:10.1016/j.cell.2013.04.056

    CAS  PubMed  Article  Google Scholar 

  23. Kuwako K, Kakumoto K, Imai T, Igarashi M, Hamakubo T, Sakakibara S, Tessier-Lavigne M, Okano HJ, Okano H (2010) Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 67(3):407–421. doi:10.1016/j.neuron.2010.07.005

    CAS  PubMed  Article  Google Scholar 

  24. Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, Holt CE (2010) Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J Neurosci 30(46):15464–15478. doi:10.1523/JNEUROSCI.1800-10.2010

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Fambrough D, Pan D, Rubin GM, Goodman CS (1996) The cell surface metalloprotease/disintegrin Kuzbanian is required for axonal extension in Drosophila. Proc Natl Acad Sci U S A 93(23):13233–13238

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289(5483):1360–1365

    CAS  PubMed  Article  Google Scholar 

  27. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123(2):291–304. doi:10.1016/j.cell.2005.08.014

    CAS  PubMed  Article  Google Scholar 

  28. Galko MJ, Tessier-Lavigne M (2000) Function of an axonal chemoattractant modulated by metalloprotease activity. Science 289(5483):1365–1367

    CAS  PubMed  Article  Google Scholar 

  29. Nawabi H, Briancon-Marjollet A, Clark C, Sanyas I, Takamatsu H, Okuno T, Kumanogoh A, Bozon M, Takeshima K, Yoshida Y, Moret F, Abouzid K, Castellani V (2010) A midline switch of receptor processing regulates commissural axon guidance in vertebrates. Genes Dev 24(4):396–410. doi:10.1101/gad.542510

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Charoy C, Nawabi H, Reynaud F, Derrington E, Bozon M, Wright K, Falk J, Helmbacher F, Kindbeiter K, Castellani V (2012) gdnf activates midline repulsion by Semaphorin3B via NCAM during commissural axon guidance. Neuron 75(6):1051–1066. doi:10.1016/j.neuron.2012.08.021

    CAS  PubMed  Article  Google Scholar 

  31. Fournier AE, Nakamura F, Kawamoto S, Goshima Y, Kalb RG, Strittmatter SM (2000) Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 149(2):411–422

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Castellani V, Falk J, Rougon G (2004) Semaphorin3A-induced receptor endocytosis during axon guidance responses is mediated by L1 CAM. Mol Cell Neurosci 26(1):89–100. doi:10.1016/j.mcn.2004.01.010

    CAS  PubMed  Article  Google Scholar 

  33. Bechara A, Falk J, Moret F, Castellani V (2007) Modulation of semaphorin signaling by Ig superfamily cell adhesion molecules. Adv Exp Med Biol 600:61–72. doi:10.1007/978-0-387-70956-7_6

    PubMed  Article  Google Scholar 

  34. Williams ME, Wu SC, McKenna WL, Hinck L (2003) Surface expression of the netrin receptor UNC5H1 is regulated through a protein kinase C-interacting protein/protein kinase-dependent mechanism. J Neurosci 23(36):11279–11288

    CAS  PubMed  Google Scholar 

  35. Gomez TM, Spitzer NC (1999) In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397(6717):350–355. doi:10.1038/16927

    CAS  PubMed  Article  Google Scholar 

  36. Hong K, Nishiyama M, Henley J, Tessier-Lavigne M, Poo M (2000) Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403(6765):93–98. doi:10.1038/47507

    CAS  PubMed  Article  Google Scholar 

  37. Zheng JQ (2000) Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403(6765):89–93. doi:10.1038/47501

    CAS  PubMed  Article  Google Scholar 

  38. Gomez TM, Robles E, Poo M, Spitzer NC (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291(5510):1983–1987. doi:10.1126/science.1056490

    CAS  PubMed  Article  Google Scholar 

  39. Henley JR, Huang K-H, Wang D, Poo M-M (2004) Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron 44(6):909–916

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Wen Z, Guirland C, Ming GL, Zheng JQ (2004) A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 43(6):835–846. doi:10.1016/j.neuron.2004.08.037

    CAS  PubMed  Article  Google Scholar 

  41. Tojima T, Hines JH, Henley JR, Kamiguchi H (2011) Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 12(4):191–203. doi:10.1038/nrn2996

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Song HJ, Ming GL, Poo MM (1997) cAMP-induced switching in turning direction of nerve growth cones. Nature 388(6639):275–279. doi:10.1038/40864

    CAS  PubMed  Article  Google Scholar 

  43. Ming G-L, Song H-J, Berninger B, Holt CE, Tessier-Lavigne M, Poo M-M (1997) cAMP-dependent growth cone guidance by Netrin-1. Neuron 19(6):1225–1235

    CAS  PubMed  Article  Google Scholar 

  44. Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, Poo M (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281(5382):1515–1518

    CAS  PubMed  Article  Google Scholar 

  45. Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M (2001) Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29(2):441–452

    CAS  PubMed  Article  Google Scholar 

  46. Dontchev VD, Letourneau PC (2002) Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J Neurosci 22(15):6659–6669

    CAS  PubMed  Google Scholar 

  47. Shewan D, Dwivedy A, Anderson R, Holt CE (2002) Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nat Neurosci 5(10):955–962. doi:10.1038/nn919

    CAS  PubMed  Article  Google Scholar 

  48. Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C (1999) Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401(6748):69–73. doi:10.1038/43441

    CAS  PubMed  Article  Google Scholar 

  49. Nishiyama M, Hoshino A, Tsai L, Henley JR, Goshima Y, Tessier-Lavigne M, Poo MM, Hong K (2003) Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 423(6943):990–995. doi:10.1038/nature01751

    CAS  PubMed  Article  Google Scholar 

  50. Ooashi N, Futatsugi A, Yoshihara F, Mikoshiba K, Kamiguchi H (2005) Cell adhesion molecules regulate Ca2+-mediated steering of growth cones via cyclic AMP and ryanodine receptor type 3. J Cell Biol 170(7):1159–1167. doi:10.1083/jcb.200503157

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Tojima T, Itofusa R, Kamiguchi H (2009) The nitric oxide–cGMP pathway controls the directional polarity of growth cone guidance via modulating cytosolic Ca2+ signals. J Neurosci 29(24):7886–7897. doi:10.1523/JNEUROSCI.0087-09.2009

    CAS  PubMed  Article  Google Scholar 

  52. Nishiyama M, von Schimmelmann MJ, Togashi K, Findley WM, Hong K (2008) Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning. Nat Neurosci 11(7):762–771. doi:10.1038/nn.2130

    CAS  PubMed  Article  Google Scholar 

  53. Togashi K, von Schimmelmann MJ, Nishiyama M, Lim CS, Yoshida N, Yun B, Molday RS, Goshima Y, Hong K (2008) Cyclic GMP-gated CNG channels function in Sema3A-induced growth cone repulsion. Neuron 58(5):694–707. doi:10.1016/j.neuron.2008.03.017

    CAS  PubMed  Article  Google Scholar 

  54. Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo MM (2010) Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327(5965):547–552. doi:10.1126/science.1179735

    CAS  PubMed  Article  Google Scholar 

  55. Nicol X, Hong KP, Spitzer NC (2011) Spatial and temporal second messenger codes for growth cone turning. Proc Natl Acad Sci U S A 108(33):13776–13781. doi:10.1073/pnas.1100247108

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903

    CAS  PubMed  Article  Google Scholar 

  57. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34(6):885–893

    CAS  PubMed  Article  Google Scholar 

  58. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004) cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10(6):610–616. doi:10.1038/nm1056

    CAS  PubMed  Article  Google Scholar 

  59. Mackintosh C (2004) Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 381(Pt 2):329–342

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, Larsson C (2000) Evolution of the 14-3-3 Pprotein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol 51:446–458

    CAS  PubMed  Google Scholar 

  61. Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16(3):162–172

    CAS  PubMed  Article  Google Scholar 

  62. Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddington R (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376(6536):191–194

    CAS  PubMed  Article  Google Scholar 

  63. Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A, Gamblin SJ (1995) Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376(6536):188–191

    CAS  PubMed  Article  Google Scholar 

  64. Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstrom M, Doyle DA, Elkins JM (2006) Structural basis for protein–protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A 103(46):17237–17242

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  65. Bridges D, Moorhead GBG (2005) 14-3-3 Proteins: a number of functions for a numbered protein. Sci STKE 2005 (296):re10. doi:10.1126/stke.2962005re10

  66. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4(2):153–166

    CAS  PubMed  Article  Google Scholar 

  67. Aitken A, Baxter H, Dubois T, Clokie S, Mackie S, Mitchell K, Peden A, Zemlickova E (2002) Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans 30(4):351–360. doi:10.1042/

    CAS  PubMed  Article  Google Scholar 

  68. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai L-H, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A (2003) 14-3-3 [epsi] is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller–Dieker syndrome. Nat Genet 34(3):274–285

    CAS  PubMed  Article  Google Scholar 

  69. Yingling J, Toyo-oka K, Wynshaw-Boris A (2003) Miller–Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet 73:475–488

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  70. Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP (2012) Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3zeta deficiency. Mol Psychiatry 17(4):451–466. doi:10.1038/mp.2011.158

    CAS  PubMed  Article  Google Scholar 

  71. Estrada-Bernal A, Sanford SD, Sosa LJ, Simon GC, Hansen KC, Pfenninger KH (2012) Functional complexity of the axonal growth cone: a proteomic analysis. PLoS One 7(2):e31858. doi:10.1371/journal.pone.0031858

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  72. Kent CB, Shimada T, Ferraro GB, Ritter B, Yam PT, McPherson PS, Charron F, Kennedy TE, Fournier AE (2010) 14-3-3 proteins regulate protein kinase a activity to modulate growth cone turning responses. J Neurosci 30(42):14059–14067. doi:10.1523/JNEUROSCI.3883-10.2010

    CAS  PubMed  Article  Google Scholar 

  73. Nozumi M, Togano T, Takahashi-Niki K, Lu J, Honda A, Taoka M, Shinkawa T, Koga H, Takeuchi K, Isobe T, Igarashi M (2009) Identification of functional marker proteins in the mammalian growth cone. Proc Natl Acad Sci U S A 106(40):17211–17216. doi:10.1073/pnas.0904092106

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  74. Gumy LF, Yeo GS, Tung YC, Zivraj KH, Willis D, Coppola G, Lam BY, Twiss JL, Holt CE, Fawcett JW (2011) Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17(1):85–98. doi:10.1261/rna.2386111

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  75. Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E, Fu H (1999) Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38(38):12499–12504

    CAS  PubMed  Article  Google Scholar 

  76. Yam PT, Kent CB, Morin S, Farmer WT, Alchini R, Lepelletier L, Colman DR, Tessier-Lavigne M, Fournier AE, Charron F (2012) 14-3-3 proteins regulate a cell-intrinsic switch from sonic hedgehog-mediated commissural axon attraction to repulsion after midline crossing. Neuron 76(4):735–749. doi:10.1016/j.neuron.2012.09.017

    CAS  PubMed  Article  Google Scholar 

  77. Yoon BC, Zivraj KH, Strochlic L, Holt CE (2011) 14-3-3 proteins regulate retinal axon growth by modulating ADF/cofilin activity. Dev Neurobiol. doi:10.1002/dneu.20955

    Google Scholar 

  78. Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12(19):1704–1710

    CAS  PubMed  Article  Google Scholar 

  79. Yang T, Terman JR (2012) 14-3-3epsilon couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron 74(1):108–121. doi:10.1016/j.neuron.2011.12.034

    CAS  PubMed  Article  Google Scholar 

  80. Ramser EM, Buck F, Schachner M, Tilling T (2010) Binding of alphaII spectrin to 14-3-3beta is involved in NCAM-dependent neurite outgrowth. Mol Cell Neurosci 45(1):66–74. doi:10.1016/j.mcn.2010.05.013

    CAS  PubMed  Article  Google Scholar 

  81. Ramser EM, Wolters G, Dityateva G, Dityatev A, Schachner M, Tilling T (2010) The 14-3-3zeta protein binds to the cell adhesion molecule L1, promotes L1 phosphorylation by CKII and influences L1-dependent neurite outgrowth. PLoS One 5(10):e13462. doi:10.1371/journal.pone.0013462

    PubMed Central  PubMed  Article  Google Scholar 

  82. Deakin NO, Bass MD, Warwood S, Schoelermann J, Mostafavi-Pour Z, Knight D, Ballestrem C, Humphries MJ (2009) An integrin-alpha4-14-3-3zeta-paxillin ternary complex mediates localised Cdc42 activity and accelerates cell migration. J Cell Sci 122(Pt 10):1654–1664. doi:10.1242/jcs.049130

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  83. Kobayashi H, Ogura Y, Sawada M, Nakayama R, Takano K, Minato Y, Takemoto Y, Tashiro E, Watanabe H, Imoto M (2011) Involvement of 14-3-3 proteins in the second epidermal growth factor-induced wave of Rac1 activation in the process of cell migration. J Biol Chem 286(45):39259–39268. doi:10.1074/jbc.M111.255489

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  84. O'Toole TE, Bialkowska K, Li X, Fox JE (2011) Tiam1 is recruited to beta1-integrin complexes by 14-3-3zeta where it mediates integrin-induced Rac1 activation and motility. J Cell Physiol 226(11):2965–2978. doi:10.1002/jcp.22644

    PubMed  Article  Google Scholar 

  85. Leto D, Uhm M, Williams A, Chen XW, Saltiel AR (2013) Negative regulation of the RalGAP complex by 14-3-3. J Biol Chem 288(13):9272–9283. doi:10.1074/jbc.M112.426106

    CAS  PubMed  Article  Google Scholar 

  86. Riou P, Kjaer S, Garg R, Purkiss A, George R, Cain RJ, Bineva G, Reymond N, McColl B, Thompson AJ, O'Reilly N, McDonald NQ, Parker PJ, Ridley AJ (2013) 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit g proteins. Cell 153(3):640–653. doi:10.1016/j.cell.2013.03.044

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Work performed in the A.E.F and F.C. laboratories and presented in this study was supported by grants to A.E.F. and F.C. from the Canadian Institutes of Health Research (CIHR) and by the McGill Neuroengineering program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyson E. Fournier.

Additional information

A. Kaplan and C.B. Kent contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaplan, A., Kent, C.B., Charron, F. et al. Switching Responses: Spatial and Temporal Regulators of Axon Guidance. Mol Neurobiol 49, 1077–1086 (2014). https://doi.org/10.1007/s12035-013-8582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8582-8

Keywords

  • Axon guidance
  • 14-3-3
  • Growth cone
  • Commissural neuron
  • Local translation