Molecular Neurobiology

, Volume 49, Issue 1, pp 590–600 | Cite as

Exosomes: Mediators of Neurodegeneration, Neuroprotection and Therapeutics



Exosomes have emerged as prominent mediators of neurodegenerative diseases where they have been shown to carry disease particles such as beta amyloid and prions from their cells of origin to other cells. Their simple structure and ability to cross the blood–brain barrier allow great opportunity to design a “makeup” with drugs and genetic elements, such as siRNA or miRNA, and use them as delivery vehicles for neurotherapeutics. Their role in neuroprotection is evident by the fact that they are involved in the regeneration of peripheral nerves and repair of neuronal injuries. This review is focused on the role of exosomes in mediating neurodegeneration and neuroprotection.


Blood–brain barrier Exosomes Neurotherapeutics Neurodegeneration 


  1. 1.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318PubMedGoogle Scholar
  2. 2.
    Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ et al (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367PubMedCentralPubMedGoogle Scholar
  3. 3.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedGoogle Scholar
  4. 4.
    Ramachandran S, Palanisamy V (2012) Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA 3:286–293PubMedCentralPubMedGoogle Scholar
  5. 5.
    Chen X, Liang H, Zhang J, Zen K, Zhang CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell 3:28–37PubMedGoogle Scholar
  6. 6.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856PubMedGoogle Scholar
  7. 7.
    Muller G (2012) Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 5:247–282PubMedCentralPubMedGoogle Scholar
  8. 8.
    Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88PubMedGoogle Scholar
  9. 9.
    Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593PubMedGoogle Scholar
  10. 10.
    Lai CP, Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3:228PubMedCentralPubMedGoogle Scholar
  11. 11.
    Fevrier B, Vilette D, Laude H, Raposo G (2005) Exosomes: a bubble ride for prions? Traffic 6:10–17PubMedGoogle Scholar
  12. 12.
    Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. J Biol Chem 287:10977–10989PubMedGoogle Scholar
  13. 13.
    Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374PubMedGoogle Scholar
  14. 14.
    Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920PubMedGoogle Scholar
  15. 15.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedGoogle Scholar
  16. 16.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30PubMedGoogle Scholar
  17. 17.
    Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA et al (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189:223–232PubMedGoogle Scholar
  18. 18.
    Allan D, Thomas P, Limbrick AR (1980) The isolation and characterization of 60 nm vesicles (‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes. Biochem J 188:881–887PubMedGoogle Scholar
  19. 19.
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948PubMedGoogle Scholar
  20. 20.
    Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9:4997–5000PubMedGoogle Scholar
  21. 21.
    Chu Z, Witte DP, Qi X (2005) Saposin C-LBPA interaction in late-endosomes/lysosomes. Exp Cell Res 303:300–307PubMedGoogle Scholar
  22. 22.
    Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De MA et al (2009) Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 284:34211–34222PubMedGoogle Scholar
  23. 23.
    Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171PubMedGoogle Scholar
  24. 24.
    Batista BS, Eng WS, Pilobello KT, Hendricks-Munoz KD, Mahal LK (2011) Identification of a conserved glycan signature for microvesicles. J Proteome Res 10:4624–4633PubMedCentralPubMedGoogle Scholar
  25. 25.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedGoogle Scholar
  26. 26.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedCentralPubMedGoogle Scholar
  27. 27.
    Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3:447–450PubMedGoogle Scholar
  28. 28.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46PubMedGoogle Scholar
  29. 29.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21PubMedGoogle Scholar
  30. 30.
    Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653PubMedCentralPubMedGoogle Scholar
  31. 31.
    Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO et al (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2:180PubMedCentralPubMedGoogle Scholar
  32. 32.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCentralPubMedGoogle Scholar
  33. 33.
    Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G et al (2011) Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 46:409–418PubMedGoogle Scholar
  34. 34.
    Fruhbeis C, Frohlich D, Kramer-Albers EM (2012) Emerging roles of exosomes in neuron-glia communication. Front Physiol 3:119PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553PubMedGoogle Scholar
  36. 36.
    Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E et al (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054PubMedGoogle Scholar
  37. 37.
    Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F et al (2011) Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. J Neurosci 31:7275–7290PubMedGoogle Scholar
  38. 38.
    Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4PubMedGoogle Scholar
  39. 39.
    van der Vos KE, Balaj L, Skog J, Breakefield XO (2011) Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 31:949–959PubMedCentralPubMedGoogle Scholar
  40. 40.
    Nixon RA (2005) Endosome function and dysfunction in Alzheimer’s disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382PubMedGoogle Scholar
  41. 41.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37:323–332PubMedGoogle Scholar
  42. 42.
    Guest WC, Silverman JM, Pokrishevsky E, O’Neill MA, Grad LI, Cashman NR (2011) Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. J Toxicol Environ Health A 74:1433–1459PubMedGoogle Scholar
  43. 43.
    Ecroyd H, Sarradin P, Dacheux JL, Gatti JL (2004) Compartmentalization of prion isoforms within the reproductive tract of the ram. Biol Reprod 71:993–1001PubMedGoogle Scholar
  44. 44.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M et al (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101:9683–9688PubMedCentralPubMedGoogle Scholar
  45. 45.
    Vella LJ, Sharples RA, Lawson VA, Masters CL, Cappai R, Hill AF (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590PubMedGoogle Scholar
  46. 46.
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010PubMedGoogle Scholar
  47. 47.
    Gousset K, Zurzolo C (2009) Tunnelling nanotubes: a highway for prion spreading? Prion 3:94–98PubMedCentralPubMedGoogle Scholar
  48. 48.
    Paula-Barbosa MM, Mota CR, Faria R, Cruz C (1978) Multivesicular bodies in cortical dendrites of two patients with Alzheimer’s disease. J Neurol Sci 36:259–264PubMedGoogle Scholar
  49. 49.
    Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H et al (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161:1869–1879PubMedGoogle Scholar
  50. 50.
    Lublin AL, Gandy S (2010) Amyloid-beta oligomers: possible roles as key neurotoxins in Alzheimer’s disease. Mt Sinai J Med 77:43–49PubMedCentralPubMedGoogle Scholar
  51. 51.
    Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P et al (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103:11172–11177PubMedCentralPubMedGoogle Scholar
  52. 52.
    Zhang B, Une Y, Fu X, Yan J, Ge F, Yao J et al (2008) Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease. Proc Natl Acad Sci U S A 105:7263–7268PubMedCentralPubMedGoogle Scholar
  53. 53.
    Aronin N, Kim M, Laforet G, DiFiglia M (1999) Are there multiple pathways in the pathogenesis of Huntington’s disease? Philos Trans R Soc Lond B Biol Sci 354:995–1003PubMedGoogle Scholar
  54. 54.
    Sapp E, Schwarz C, Chase K, Bhide PG, Young AB, Penney J et al (1997) Huntingtin localization in brains of normal and Huntington’s disease patients. Ann Neurol 42:604–612PubMedGoogle Scholar
  55. 55.
    Atwal RS, Truant R (2008) A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy. Autophagy 4:91–93PubMedGoogle Scholar
  56. 56.
    Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N et al (2000) Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci 20:7268–7278PubMedGoogle Scholar
  57. 57.
    Valencia A, Reeves PB, Sapp E, Li X, Alexander J, Kegel KB et al (2010) Mutant huntingtin and glycogen synthase kinase 3-beta accumulate in neuronal lipid rafts of a presymptomatic knock-in mouse model of Huntington’s disease. J Neurosci Res 88:179–190PubMedGoogle Scholar
  58. 58.
    Li Y, Chin LS, Levey AI, Li L (2002) Huntingtin-associated protein 1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate and functions in endosomal trafficking. J Biol Chem 277:28212–28221PubMedGoogle Scholar
  59. 59.
    Li X, Valencia A, Sapp E, Masso N, Alexander J, Reeves P et al (2010) Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J Neurosci 30:4552–4561PubMedGoogle Scholar
  60. 60.
    Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066PubMedGoogle Scholar
  61. 61.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272PubMedGoogle Scholar
  62. 62.
    Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124PubMedCentralPubMedGoogle Scholar
  63. 63.
    Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851PubMedGoogle Scholar
  64. 64.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106:13010–13015PubMedCentralPubMedGoogle Scholar
  65. 65.
    Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725PubMedCentralPubMedGoogle Scholar
  66. 66.
    Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352:33–47PubMedCentralPubMedGoogle Scholar
  67. 67.
    Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835–1849PubMedGoogle Scholar
  68. 68.
    Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272PubMedGoogle Scholar
  69. 69.
    Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 10:1015–1025PubMedGoogle Scholar
  70. 70.
    Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O et al (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–4034PubMedGoogle Scholar
  71. 71.
    Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ et al (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314:2055–2065PubMedGoogle Scholar
  72. 72.
    Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT et al (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640PubMedGoogle Scholar
  73. 73.
    Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE et al (2011) Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 43:338–345PubMedCentralPubMedGoogle Scholar
  74. 74.
    Aguzzi A, Heikenwalder M (2006) Pathogenesis of prion diseases: current status and future outlook. Nat Rev Microbiol 4:765–775PubMedGoogle Scholar
  75. 75.
    Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL et al (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100:603–615PubMedGoogle Scholar
  76. 76.
    Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648PubMedGoogle Scholar
  77. 77.
    Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124:385–393PubMedGoogle Scholar
  78. 78.
    Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23:89–99PubMedGoogle Scholar
  79. 79.
    Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B (2002) Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes EMBO J 2:1031–40Google Scholar
  80. 80.
    Ersdal C, Goodsir CM, Simmons MM, McGovern G, Jeffrey M (2009) Abnormal prion protein is associated with changes of plasma membranes and endocytosis in bovine spongiform encephalopathy (BSE)-affected cattle brains. Neuropathol Appl Neurobiol 35:259–271PubMedGoogle Scholar
  81. 81.
    Laszlo L, Lowe J, Self T, Kenward N, Landon M, McBride T et al (1992) Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol 166:333–341PubMedGoogle Scholar
  82. 82.
    Johnson JE, Mehler WR, Miquel J (1975) A fine structural study of degenerative changes in the dorsal column nuclei of aging mice Lack of protection by vitamin E. J Gerontol 30:395–411PubMedGoogle Scholar
  83. 83.
    de la Roza C, Cano J, Reinoso-Suarez F (1985) An electron microscopic study of astroglia and oligodendroglia in the lateral geniculate nucleus of aged rats. Mech Ageing Dev 29:267–281PubMedGoogle Scholar
  84. 84.
    Townes-Anderson E, Raviola G (1978) Degeneration and regeneration of autonomic nerve endings in the anterior part of rhesus monkey ciliary muscle. J Neurocytol 7:583–600PubMedGoogle Scholar
  85. 85.
    Schroer JA, Plurad SB, Schmidt RE (1992) Fine structure of presynaptic axonal terminals in sympathetic autonomic ganglia of aging and diabetic human subjects. Synapse 12:1–13PubMedGoogle Scholar
  86. 86.
    Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y et al (2013) Mir-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. doi:10.1002/stem.1409 Google Scholar
  87. 87.
    Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ et al (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243PubMedGoogle Scholar
  88. 88.
    Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67:1815–1829PubMedGoogle Scholar
  89. 89.
    Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H et al (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461PubMedGoogle Scholar
  90. 90.
    Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D et al (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858PubMedGoogle Scholar
  91. 91.
    Campbell RM, Peterson AC (1993) Expression of a lacZ transgene reveals floor plate cell morphology and macromolecular transfer to commissural axons. Development 119:1217–1228PubMedGoogle Scholar
  92. 92.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131PubMedCentralPubMedGoogle Scholar
  93. 93.
    Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645PubMedGoogle Scholar
  94. 94.
    Cadigan KM (2002) Regulating morphogen gradients in the Drosophila wing. Semin Cell Dev Biol 13:83–90PubMedGoogle Scholar
  95. 95.
    Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209PubMedCentralPubMedGoogle Scholar
  96. 96.
    Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183:1187–1191PubMedGoogle Scholar
  97. 97.
    Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35PubMedCentralPubMedGoogle Scholar
  98. 98.
    Sang Q, Kim MH, Kumar S, Bye N, Morganti-Kossman MC, Gunnersen J et al (2006) Nedd4-WW domain-binding protein 5 (Ndfip1) is associated with neuronal survival after acute cortical brain injury. J Neurosci 26:7234–7244PubMedGoogle Scholar
  99. 99.
    Putz U, Howitt J, Lackovic J, Foot N, Kumar S, Silke J et al (2008) Nedd4 family-interacting protein 1 (Ndfip1) is required for the exosomal secretion of Nedd4 family proteins. J Biol Chem 283:32621–32627PubMedGoogle Scholar
  100. 100.
    Court FA, Hendriks WT, MacGillavry HD, Alvarez J, van Minnen J (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029PubMedGoogle Scholar
  101. 101.
    Twiss JL, Fainzilber M (2009) Ribosomes in axons–scrounging from the neighbors? Trends Cell Biol 19:236–243PubMedGoogle Scholar
  102. 102.
    Court FA, Midha R, Cisterna BA, Grochmal J, Shakhbazau A, Hendriks WT et al (2011) Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia 59:1529–1539PubMedGoogle Scholar
  103. 103.
    Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315PubMedCentralPubMedGoogle Scholar
  104. 104.
    Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144PubMedGoogle Scholar
  105. 105.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedGoogle Scholar
  106. 106.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C et al (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18:1606–1614PubMedGoogle Scholar
  107. 107.
    Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Strobel T, Erkan EP et al (2012) miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 1:e10PubMedCentralPubMedGoogle Scholar
  108. 108.
    Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71PubMedCentralPubMedGoogle Scholar
  109. 109.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedGoogle Scholar
  110. 110.
    Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574PubMedGoogle Scholar
  111. 111.
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620PubMedGoogle Scholar
  112. 112.
    Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629PubMedGoogle Scholar
  113. 113.
    Whitehead KA, Dahlman JE, Langer RS, Anderson DG (2011) Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng 2:77–96PubMedGoogle Scholar
  114. 114.
    Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018PubMedGoogle Scholar
  115. 115.
    Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C (2010) Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 123:1603–1611PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201University of LouisvilleLouisvilleUSA

Personalised recommendations