Molecular Neurobiology

, Volume 49, Issue 1, pp 547–562 | Cite as

Intracerebroventricular Streptozotocin Exacerbates Alzheimer-Like Changes of 3xTg-AD Mice

  • Yanxing Chen
  • Zhihou Liang
  • Zhu Tian
  • Julie Blanchard
  • Chun-ling Dai
  • Sonia Chalbot
  • Khalid Iqbal
  • Fei Liu
  • Cheng-Xin Gong


Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3–6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.


Streptozotocin 3xTg-AD mice Cognitive deficits Tau phosphorylation Amyloid-β Synaptic proteins Neuroinflammation Insulin signaling 



We thank F.M. LaFerla of University of California, Irvine, for providing the breeding pairs of 3xTg-AD mouse, and Ms. J. Murphy for secretarial assistance. This work was supported in part by the New York State Office for People with Developmental Disabilities as well as grants from the National Institutes of Health (R01 AG027429 and R03 TW008123), the U.S. Alzheimer's Association (IIRG-10-170405 and IIRG-10-173154), the National Key Basic Research Program of China (2013CB530900), and the Wuhan Science and Technology Bureau, China (200960323132). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2013_8539_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)


  1. 1.
    Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 118(1):167–179CrossRefPubMedGoogle Scholar
  2. 2.
    Arluison M, Quignon M, Nguyen P, Thorens B, Leloup C, Penicaud L (2004) Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain–an immunohistochemical study. J Chem Neuroanat 28(3):117–136CrossRefPubMedGoogle Scholar
  3. 3.
    Arnaud L, Robakis NK, Figueiredo-Pereira ME (2006) It may take inflammation, phosphorylation and ubiquitination to 'tangle' in Alzheimer's disease. Neurodegener Dis 3(6):313–319CrossRefPubMedGoogle Scholar
  4. 4.
    Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70(1):241–250CrossRefPubMedGoogle Scholar
  5. 5.
    Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688CrossRefPubMedGoogle Scholar
  6. 6.
    Blanchard J, Wanka L, Tung YC, Cardenas-Aguayo Mdel C, LaFerla FM, Iqbal K, Grundke-Iqbal I (2010) Pharmacologic reversal of neurogenic and neuroplastic abnormalities and cognitive impairments without affecting Abeta and tau pathologies in 3xTg-AD mice. Acta Neuropathol 120(5):605–621CrossRefPubMedGoogle Scholar
  7. 7.
    Blondel O, Portha B (1989) Early appearance of in vivo insulin resistance in adult streptozotocin-injected rats. Diabete Metab 15(6):382–387PubMedGoogle Scholar
  8. 8.
    Casadesus G, Moreira PI, Nunomura A, Siedlak SL, Bligh-Glover W, Balraj E, Petot G, Smith MA, Perry G (2007) Indices of metabolic dysfunction and oxidative stress. Neurochem Res 32(4–5):717–722CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer's disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Y, Tian Z, Liang Z, Sun S, Dai CL, Lee MH, Laferla FM, Grundke-Iqbal I, Iqbal K, Liu F, Gong CX (2012) Brain gene expression of a sporadic (icv-STZ Mouse) and a familial mouse model (3xTg-AD Mouse) of Alzheimer's disease. PLoS One 7(12):e51432CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20(23):8853–8860PubMedGoogle Scholar
  12. 12.
    Clinton LK, Billings LM, Green KN, Caccamo A, Ngo J, Oddo S, McGaugh JL, LaFerla FM (2007) Age-dependent sexual dimorphism in cognition and stress response in the 3xTg-AD mice. Neurobiol Dis 28(1):76–82CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Curr Alzheimer Res 9(1):35–66CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    de Leon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer's disease. J Cereb Blood Flow Metab 3(3):391–394CrossRefPubMedGoogle Scholar
  16. 16.
    DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 27(5):457–464CrossRefPubMedGoogle Scholar
  17. 17.
    Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. Am J Pathol 175(5):2089–2098CrossRefPubMedGoogle Scholar
  18. 18.
    Devi L, Alldred MJ, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of beta-amyloidosis in a mouse model of Alzheimer's disease. PLoS One 7(3):e32792CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Ennaceur A, Aggleton JP (1997) The effects of neurotoxic lesions of the perirhinal cortex combined to fornix transection on object recognition memory in the rat. Behav Brain Res 88(2):181–193CrossRefPubMedGoogle Scholar
  20. 20.
    Ennaceur A, Neave N, Aggleton JP (1997) Spontaneous object recognition and object location memory in rats: the effects of lesions in the cingulate cortices, the medial prefrontal cortex, the cingulum bundle and the fornix. Exp Brain Res 113(3):509–519CrossRefPubMedGoogle Scholar
  21. 21.
    Francis G, Martinez J, Liu W, Nguyen T, Ayer A, Fine J, Zochodne D, Hanson LR, Frey WH 2nd, Toth C (2009) Intranasal insulin ameliorates experimental diabetic neuropathy. Diabetes 58(4):934–945CrossRefPubMedGoogle Scholar
  22. 22.
    Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, Tuor UI, Glazner G, Hanson LR, Frey WH 2nd, Toth C (2008) Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain 131(Pt 12):3311–3334CrossRefPubMedGoogle Scholar
  23. 23.
    Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A, LaFerla FM, Fernandez-Teruel A (2007) Modeling behavioral and neuronal symptoms of Alzheimer's disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev 31(1):125–147CrossRefPubMedGoogle Scholar
  24. 24.
    Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770CrossRefPubMedGoogle Scholar
  25. 25.
    Heiss WD, Szelies B, Kessler J, Herholz K (1991) Abnormalities of energy metabolism in Alzheimer's disease studied with PET. Ann N Y Acad Sci 640:65–71PubMedGoogle Scholar
  26. 26.
    Heneka MT, O'Banion MK (2007) Inflammatory processes in Alzheimer's disease. J Neuroimmunol 184(1–2):69–91CrossRefPubMedGoogle Scholar
  27. 27.
    Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs CV, Hof PR, Pasinetti GM (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J 18(7):902–904PubMedGoogle Scholar
  28. 28.
    Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125CrossRefPubMedGoogle Scholar
  29. 29.
    Hoyer S, Lannert H (2007) Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein. J Neural Transm Suppl 72:195–202CrossRefPubMedGoogle Scholar
  30. 30.
    Iqbal K, Wang X, Blanchard J, Liu F, Gong CX, Grundke-Iqbal I (2010) Alzheimer's disease neurofibrillary degeneration: pivotal and multifactorial. Biochem Soc Trans 38(4):962–966CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J Neuroinflammation 2:23CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Jolivalt CG, Hurford R, Lee CA, Dumaop W, Rockenstein E, Masliah E (2010) Type 1 diabetes exaggerates features of Alzheimer's disease in APP transgenic mice. Exp Neurol 223(2):422–431CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 25(39):8843–8853CrossRefPubMedGoogle Scholar
  34. 34.
    Kloda A, Martinac B, Adams DJ (2007) Polymodal regulation of NMDA receptor channels. Channels (Austin) 1(5):334–343Google Scholar
  35. 35.
    Kopf D, Frolich L (2009) Risk of incident Alzheimer's disease in diabetic patients: a systematic review of prospective trials. J Alzheimers Dis 16(4):677–685PubMedGoogle Scholar
  36. 36.
    Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2009) Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J Neurochem 111(1):242–249CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J Pathol 225(1):54–62CrossRefPubMedGoogle Scholar
  38. 38.
    Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2):359–364CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefPubMedGoogle Scholar
  40. 40.
    Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA (2009) Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci 29(20):6734–6751CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G, Parsons CG, Gupta S, Banerjee P, LaFerla FM (2010) Memantine improves cognition and reduces Alzheimer's-like neuropathology in transgenic mice. Am J Pathol 176(2):870–880CrossRefPubMedGoogle Scholar
  42. 42.
    Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer's disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mayer G, Nitsch R, Hoyer S (1990) Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Res 532(1–2):95–100CrossRefPubMedGoogle Scholar
  44. 44.
    Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683CrossRefPubMedGoogle Scholar
  45. 45.
    Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32(4):486–510CrossRefPubMedGoogle Scholar
  46. 46.
    Nitsch R, Hoyer S (1991) Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neurosci Lett 128(2):199–202CrossRefPubMedGoogle Scholar
  47. 47.
    Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiol Aging 24(8):1063–1070CrossRefPubMedGoogle Scholar
  48. 48.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421CrossRefPubMedGoogle Scholar
  49. 49.
    Pei JJ, Gong CX, Iqbal K, Grundke-Iqbal I, Wu QL, Winblad B, Cowburn RF (1998) Subcellular distribution of protein phosphatases and abnormally phosphorylated tau in the temporal cortex from Alzheimer's disease and control brains. J Neural Trans 105(1):69–83CrossRefGoogle Scholar
  50. 50.
    Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167CrossRefPubMedGoogle Scholar
  51. 51.
    Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, Yu WH, Luchsinger JA, Wadzinski B, Duff KE, Takashima A (2007) Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci 27(50):13635–13648CrossRefPubMedGoogle Scholar
  52. 52.
    Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19(2):691–704PubMedGoogle Scholar
  53. 53.
    Prickaerts J, Fahrig T, Blokland A (1999) Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis. Behav Brain Res 102(1–2):73–88CrossRefPubMedGoogle Scholar
  54. 54.
    Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH 2nd, Craft S (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13(3):323–331PubMedCentralPubMedGoogle Scholar
  55. 55.
    Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J (2001) Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc Natl Acad Sci U S A 98(6):3334–3339CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Rodrigues L, Biasibetti R, Swarowsky A, Leite MC, Quincozes-Santos A, Quilfeldt JA, Achaval M, Goncalves CA (2009) Hippocampal alterations in rats submitted to streptozotocin-induced dementia model are prevented by aminoguanidine. J Alzheimers Dis 17(1):193–202PubMedGoogle Scholar
  57. 57.
    Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233CrossRefPubMedGoogle Scholar
  58. 58.
    Sargolini F, Roullet P, Oliverio A, Mele A (2003) Effects of intra-accumbens focal administrations of glutamate antagonists on object recognition memory in mice. Behav Brain Res 138(2):153–163CrossRefPubMedGoogle Scholar
  59. 59.
    Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298(5594):789–791CrossRefPubMedGoogle Scholar
  60. 60.
    Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V (2012) Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging 33 (2):430 e435–418Google Scholar
  61. 61.
    Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nature reviews 6(10):551–559PubMedCentralPubMedGoogle Scholar
  62. 62.
    Smith GS, de Leon MJ, George AE, Kluger A, Volkow ND, McRae T, Golomb J, Ferris SH, Reisberg B, Ciaravino J et al (1992) Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzheimer's disease. Pathophysiologic implications. Arch Neurol 49(11):1142–1150CrossRefPubMedGoogle Scholar
  63. 63.
    Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546PubMedGoogle Scholar
  64. 64.
    Tatebayashi Y, Iqbal K, Grundke-Iqbal I (1999) Dynamic regulation of expression and phosphorylation of tau by fibroblast growth factor-2 in neural progenitor cells from adult rat hippocampus. J Neurosci 19(13):5245–5254PubMedGoogle Scholar
  65. 65.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580CrossRefPubMedGoogle Scholar
  66. 66.
    Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp Neurol 158(2):328–337CrossRefPubMedGoogle Scholar
  67. 67.
    Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:46CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Weitz TM, Town T (2012) Microglia in Alzheimer's disease: it's all about context. Int J Alzheimers Dis 2012:314185PubMedCentralPubMedGoogle Scholar
  69. 69.
    Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–457CrossRefPubMedGoogle Scholar
  70. 70.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346CrossRefPubMedGoogle Scholar
  71. 71.
    Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, Yu X, Gong CX (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis 33(2):329–338PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yanxing Chen
    • 1
    • 2
    • 3
  • Zhihou Liang
    • 3
  • Zhu Tian
    • 1
    • 4
  • Julie Blanchard
    • 1
  • Chun-ling Dai
    • 1
  • Sonia Chalbot
    • 1
  • Khalid Iqbal
    • 1
  • Fei Liu
    • 1
  • Cheng-Xin Gong
    • 1
  1. 1.Department of Neurochemistry, Inge Grundke-Iqbal Research FloorNew York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA
  2. 2.Department of Neurology, the Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
  4. 4.Department of NeurologyTianjin First Center HospitalTianjinChina

Personalised recommendations