Skip to main content

Amyloid Precursor Protein Mutation Disrupts Reproductive Experience-Enhanced Normal Cognitive Development in a Mouse Model of Alzheimer's Disease

Abstract

Women experience dramatic changes in hormones, mood and cognition through different periods of their reproductive lives, particularly during pregnancy and giving birth. While limited human studies of early pregnancy and motherhood showed alteration of cognitive functions in later life, researches on rodents showed a persistent improvement of learning and memory performance in females with history of giving birth compared to virgin controls. Alzheimer's disease (AD), the most common dementia in elderly, is more prevalent in women than in men. One of the risk factors is related to the sharp reduction of estrogen in aged women. It is unknown whether the history of fertility activity plays any roles in altering risk of AD in females, such as altering cognitive function. Would reproductive experience alter the risk of AD in females? If so, what might be the mechanisms of the change? In this study, we examined the effects of reproductive experience on cognitive function in an AD transgenic mouse model (APP23) and age-matched wild-type non-transgenic control mice (WT). Our data showed an age-dependent effect of reproductive experience on learning and memory activity between breeders (had one or more litters) and non-breeders (virgins). More importantly, our data, for the first time, demonstrated a genotype-dependent effect of parity on cognitive function between APP23 and WT mice. At the age of 12 months, WT breeders outperform non-breeders in spatial working and reference memory while APP23 breeders performed worse in spatial learning and memory than age-matched APP23 non-breeders. These genotype- and age-dependent effects of reproductive activity on cognitions are significantly associated with changes of neuropathology of AD in the APP23 mice, expression of proteins related to synaptic plasticity and cognitive functions in the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Letenneur L, Gilleron V, Commenges D, Helmer C, Orgogozo JM, Dartigues JF (1999) Are sex and educational level independent predictors of dementia and Alzheimer's disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry 66(2):177–83

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Hy LX, Keller DM (2000) Prevalence of AD among whites: a summary by levels of severity. Neurology 55(2):198–204

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Colucci M, Cammarata S, Assini A, Croce R, Clerici F, Novello C, Mazzella L, Dagnino N, Mariani C, Tanganelli P (2006) The number of pregnancies is a risk factor for Alzheimer's disease. Eur J Neurol 13(12):1374–7

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    McLay RN, Maki PM, Lyketsos CG (2003) Nulliparity and late menopause are associated with decreased cognitive decline. J Neuropsychiatry Clin Neurosci 15(2):161–7

    Article  PubMed  Google Scholar 

  5. 5.

    Corbo RM, Gambina G, Ulizzi L, Monini P, Broggio E, Rosano A, Scacchi R (2007) Combined effect of apolipoprotein e genotype and past fertility on age at onset of Alzheimer's disease in women. Dement Geriatr Cogn Disord 24(2):82–5

    CAS  PubMed  Google Scholar 

  6. 6.

    Ptok U, Barkow K, Heun R (2002) Fertility and number of children in patients with Alzheimer's disease. Arch Womens Ment Health 5(2):83–6

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Love G, Torrey N, McNamara I, Morgan M, Banks M, Hester NW, Glasper ER, Devries AC, Kinsley CH, Lambert KG (2005) Maternal experience produces long-lasting behavioral modifications in the rat. Behav Neurosci 119(4):1084–96

    Article  PubMed  Google Scholar 

  8. 8.

    Kinsley CH, Madonia L, Gifford GW, Tureski K, Griffin GR, Lowry C, Williams J, Collins J, McLearie H, Lambert KG (1999) Motherhood improves learning and memory. Nature 402:137–8

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Pawluski JL, Galea LA (2006) Hippocampal morphology is differentially affected by reproductive experience in the mother. J Neurobiol 66(1):71–81

    Article  PubMed  Google Scholar 

  10. 10.

    Price DL, Sisodia SS (1994) Cellular and molecular biology of Alzheimer's disease and animal models. Annu Rev Med 45:435–46, Review

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–41

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature 402(6761):533–7

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Yang L-B, Lindholm K, Yan R, Citron M, Xia W, Konishi Y, Yang XL, Beach T, Sue L, Wang P, Price D, Li R, Shen Y (2003) Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer's brains. Nat Med 9:3–4

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Yue X, Lu M, Lancaster T, Cao P, Honda S, Staufenbiel M, Harada N, Zhong Z, Shen Y, Li R (2005) Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model. Proc Natl Acad Sci U S A 102(52):19198–203, Epub 2005 Dec 19

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  15. 15.

    Boncristiano S, Calhoun ME, Howard V, Bondolfi L, Kaeser SA, Wiederhold KH, Staufenbiel M, Jucker M (2005) Neocortical synaptic bouton number is maintained despite robust amyloid deposition in APP23 transgenic mice. Neurobiol Aging 26(5):607–13

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Wegenast-Braun BM, Fulgencio Maisch A, Eicke D, Radde R, Herzig MC, Staufenbiel M, Jucker M, Calhoun ME (2009) Independent effects of intra- and extracellular Abeta on learning-related gene expression. Am J Pathol 175(1):271–82

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Li R, Cui J, Jothishankar B, Shen J, He P, Shen Y (2013) Early reproductive experiences in females make differences in cognitive function later in life. J Alzheimers Dis 34(3):589–94

    PubMed Central  PubMed  Google Scholar 

  18. 18.

    Amada N, Aihara K, Ravid R, Horie M (2005) Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer's disease. Neuroreport 16:1809–13

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Novak G, Seeman P, Tallerico T (2006) Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse 59:61–8

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Suda S, Segi-Nishida E, Newton SS, Duman RS (2008) A postpartum model in rat: behavioral and gene expression changes induced by ovarian steroid deprivation. Biol Psychiatry 64:311–9

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  21. 21.

    Takahashi E, Niimi K, Itakura C (2009) Enhanced CaMKII activity and spatial cognitive function in SAMP6 mice. Behav Neurosci 123:527–32

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–9

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Luine V, Frankfurt M (2012) Interactions between estradiol, BDNF and dendritic spines in promoting memory. Neuroscience October 16

  24. 24.

    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–23

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Jin SH, Blendy JA, Thomas SA (2005) Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience 133:647–55

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hovorkova P, Kristofikova Z, Horinek A, Ripova D, Majer E, Zach P, Sellinger P, Ricny J (2008) Lateralization of 17beta-hydroxysteroid dehydrogenase type 10 in hippocampi of demented and psychotic people. Dement Geriatr Cogn Disord 26(3):193–8

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kristofiková Z, Bocková M, Hegnerová K, Bartos A, Klaschka J, Rícný J, Rípová D, Homola J (2009) Enhanced levels of mitochondrial enzyme 17beta-hydroxysteroid dehydrogenase type 10 in patients with Alzheimer disease and multiple sclerosis. Mol Biosyst 5(10):1174–9

    Article  PubMed  Google Scholar 

  28. 28.

    He XY, Wen GY, Merz G, Lin D, Yang YZ, Mehta P, Schulz H, Yang SY (2002) Abundant type 10 17 beta-hydroxysteroid dehydrogenase in the hippocampus of mouse Alzheimer's disease model. Brain Res Mol Brain Res 99(1):46–53

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Yang SY, He XY, Miller D (2007) HSD17B10: a gene involved in cognitive function through metabolism of isoleucine and neuroactive steroids. Mol Genet Metab 92(1–2):36–42

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wharton W, Hirshman E, Merritt P, Doyle L, Paris S, Gleason C (2008) Oral contraceptives and androgenicity: influences on visuospatial task performance in younger individuals. Exp Clin Psychopharmacol 16(2):156–64

    Article  PubMed  Google Scholar 

  31. 31.

    Griksiene R, Ruksenas O (2011) Effects of hormonal contraceptives on mental rotation and verbal fluency. Psychoneuroendocrinology 36(8):1239–48

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Moran PM, Higgins LS, Cordell B, Moser PC (1995) Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A 92(12):5341–5345

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  33. 33.

    Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–92

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Korneyev AY (1998) Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res 23:1539–1543

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Okawa Y, Ishiguro K, Fujita SC (2003) Stress-induced hyperphosphorylation of tau in the mouse brain. FEBS Lett 535:183–189

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–48

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Sobow T, Kloszewska I (2004) Parity, number of pregnancies, and the age of onset of Alzheimer's disease. J Neuropsychiatry Clin Neurosci 16(1):120–1

    Article  PubMed  Google Scholar 

  38. 38.

    Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, Geary C, Cross JC, Weiss S (2003) Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science 299:117–20

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Prange-Kiel J, Rune GM (2006) Direct and indirect effect of estrogen on rat hippocampus. Neuroscience 138:765–772

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Tomizawa K, Iga N, Lu YF, Moriwaki A, Matsushita M, Li ST, Miyamoto O, Itano T, Matsui H (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6:384–90

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Henry JD, Rendell PG (2007) A review of the impact of pregnancy on memory function. J Clin Exp Neuropsychol 29:793–803

    Article  PubMed  Google Scholar 

  42. 42.

    de Groot RH, Hornstra G, Roozendaal N, Jolles J, de Groot RHM, Hornstra G, Roozendaal N, Jolles J (2003) Memory performance, but not information processing speed, may be reduced during early pregnancy. J Clin Exp Neuropsychol 25:482–8

    Article  PubMed  Google Scholar 

  43. 43.

    Henry JF, Sherwin BB (2012) Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci 126:73–85

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Sharp K, Brindle PM, Brown MW, Turner GM (1993) Memory loss during pregnancy. Br J Obstet Gynaecol 100:209–15

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Buckwalter JG, Buckwalter DK, Bluestein BW, Stanczyk FZ (2001) Pregnancy and post partum: changes in cognition and mood. Prog Brain Res 133:303–19, Review

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    McDowall J, Moriarty R (2000) Implicit and explicit memory in pregnant women: an analysis of data-driven and conceptually driven processes. Q J Exp Psychol 53:729–40

    CAS  Article  Google Scholar 

  47. 47.

    Christensen H, Leach LS, Mackinnon A (2010) Cognition in pregnancy and motherhood: prospective cohort study. Br J Psychiatry 196:126–32

    Article  PubMed  Google Scholar 

  48. 48.

    Lemaire V, Billard JM, Dutar P, George O, Piazza PV, Epelbaum J, Le Moal M, Mayo W (2006) Motherhood-induced memory improvement persists across lifespan in rats but is abolished by a gestational stress. Eur J Neurosci 23:3368–74

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Paris JJ, Frye CA (2008) Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction 136:105

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  50. 50.

    Darnaudéry M, Perez-Martin M, Del Favero F, Gomez-Roldan C, Garcia-Segura LM, Maccari S (2007) Early motherhood in rats is associated with a modification of hippocampal function. Psychoneuroendocrinology 32:803–12

    Article  PubMed  Google Scholar 

  51. 51.

    Gatewood JD, Morgan MD, Eaton M, McNamara IM, Stevens LF, Macbeth AH, Meyer EA, Lomas LM, Kozub FJ, Lambert KG, Kinsley CH (2005) Motherhood mitigates aging-related decrements in learning and memory and positively affects brain aging in the rat. Brain Res Bull 66:91–8

    Article  PubMed  Google Scholar 

  52. 52.

    Heys M, Jiang C, Cheng KK, Zhang W, Au Yeung SL, Lam TH, Leung GM, Schooling CM (2011) Lifelong endogenous estrogen exposure and later adulthood cognitive function in a population of naturally postmenopausal women from Southern China: the Guangzhou Biobank Cohort Study. Psychoneuroendocrinology 36(6):864–73

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Laughlin GA, Kritz-Silverstein D, Barrett-Connor E (2010) Higher endogenous estrogens predict four year decline in verbal fluency in postmenopausal women: the Rancho Bernardo Study. Clin Endocrinol (Oxf) 72(1):99–106

    CAS  Article  Google Scholar 

  54. 54.

    Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59–68

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Scott BR (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer's disease therapeutics. Biochem Pharmacol 83(6):705–14

    Article  Google Scholar 

  56. 56.

    Ninan I, Arancio O (2004) Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42:129–141

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Giese KP, Fedorov NB, Filipkowski RK, Silva AJ (1998) Autophosphorylation at Thr286 of the alpha calcium–calmodulin kinase II in LTP and learning. Science 279:870–873

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Lisman J, Schulman H, Cline H (2008) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  Google Scholar 

  59. 59.

    Min D, Guo F, Zhu S, Xu X, Mao X, Cao Y, Lv X, Gao Q, Wang L, Chen T, Shaw C, Hao L, Cai J (2013) The alterations of Ca(2+)/calmodulin/CaMKII/Ca(V)1.2 signaling in experimental models of Alzheimer's disease and vascular dementia. Neurosci Lett Feb 8

  60. 60.

    Di G, Zheng Y (2013) Effects of high-speed railway noise on the synaptic ultrastructure and phosphorylated-CaMKII expression in the central nervous system of SD rats. Environ Toxicol Pharmacol 35(1):93–9

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Narita M, Matsumura Y, Ozaki S, Ise Y, Yajima Y, Suzuki T (2004) Role of the calcium/calmodulin-dependent protein kinase ii (CaMKII) in the morphine-induced pharmacological effects in the mouse. Neuroscience 126(2):415–21

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Paul CM, Magda G, Abel S (2009) Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav Brain Res 203(2):151–64

    Article  PubMed  Google Scholar 

  63. 63.

    Olton DS (1979) Mazes, maps, and memory. Am Psychol 34:583–596

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Alzheimer's Association IIRG-07-59510, American Health Assistance Foundation Grant G2006-118, NIH R01AG032441, NIH R01AG025888. We thank Mr. Alex Bishop for editing and proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rena Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cui, J., Jothishankar, B., He, P. et al. Amyloid Precursor Protein Mutation Disrupts Reproductive Experience-Enhanced Normal Cognitive Development in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 49, 103–112 (2014). https://doi.org/10.1007/s12035-013-8503-x

Download citation

Keywords

  • Fertility
  • Cognition
  • Alzheimer's disease
  • Amyloid
  • Synaptic proteins