Skip to main content

Advertisement

Log in

Insulin Resistance and Dysregulation of Tryptophan–Kynurenine and Kynurenine–Nicotinamide Adenine Dinucleotide Metabolic Pathways

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) underlines aging and aging-associated medical (diabetes, obesity, dyslipidemia, hypertension) and psychiatric (depression, cognitive decline) disorders. Molecular mechanisms of IR in genetically or metabolically predisposed individuals remain uncertain. Current review of the literature and our data presents the evidences that dysregulation of tryptophan (TRP)–kynurenine (KYN) and KYN–nicotinamide adenine dinucleotide (NAD) metabolic pathways is one of the mechanisms of IR. The first and rate-limiting step of TRP–KYN pathway is regulated by enzymes inducible by pro-inflammatory factors and/or stress hormones. The key enzymes of KYN–NAD pathway require pyridoxal-5-phosphate (P5P), an active form of vitamin B6, as a cofactor. Deficiency of P5P diverts KYN–NAD metabolism from production of NAD to the excessive formation of xanthurenic acid (XA). Human and experimental studies suggested that XA and some other KYN metabolites might impair production, release, and biological activity of insulin. We propose that one of the mechanisms of IR is inflammation- and/or stress-induced upregulation of TRP–KYN metabolism in combination with P5P deficiency-induced diversion of KYN–NAD metabolism towards formation of XA and other KYN derivatives affecting insulin activity. Monitoring of KYN/P5P status and formation of XA might help to identify subjects at risk for IR. Pharmacological regulation of the TRP–KYN and KYN–NAD pathways and maintaining of adequate vitamin B6 status might contribute to prevention and treatment of IR in conditions associated with inflammation/stress-induced excessive production of KYN and deficiency of vitamin B6, e.g., type 2 diabetes, obesity, cardiovascular diseases, aging, menopause, pregnancy, and hepatitis C virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

IR:

Insulin resistance

TRP:

Tryptophan

IFNG:

Interferon gamma

IDO:

Indoleamine 2,3-dioxygenase

KYN:

Kynurenine

KMO:

KYN 3-monooxygenase

3-HK:

3-HydroxyKYN

P5P:

Pyridoxal 5′-phosphate

NAD:

Nicotinamide adenine dinucleotide

KYNA:

Kynurenic acid

XA:

Xanthurenic acid

QA:

Quinaldic acid

8-HQ:

8-Hydroxyquinaldic acid

GTP:

Guanosine triphosphate

GTPCH:

GTP cyclohydrolase I

BH2:

7,8-Dihydroneopterin

BH4:

Tetrahydrobiopterin

NOS:

Nitric oxide synthase

References

  1. Esposito K, Giugliano D (2004) The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis 14:228–232

    Article  CAS  PubMed  Google Scholar 

  2. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated medical and psychiatric disorders. J Neural Transm 118:75–85

    Article  CAS  PubMed  Google Scholar 

  3. Oxenkrug GF (2007) Genetic and hormonal regulation of the kynurenine pathway of tryptophan metabolism: new target for clinical intervention in vascular dementia, depression and aging. Ann N Y Acad Sci 1122:35–49

    Article  CAS  PubMed  Google Scholar 

  4. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi H, Kaihara M, Price JM (1956) The conversion of kynurenic acid to quinaldic acid by human and rats. J Biol Chem 223:705–708

    CAS  PubMed  Google Scholar 

  6. Ogasawara N, Hagino Y, Kotake Y (1962) Kynurenine-transaminase, kynureninase and the increase of xanthurenic acid excretion. J Biochem 52:162–166

    CAS  PubMed  Google Scholar 

  7. Takahashi H, Price JM (1956) Dehydroxylation of xanthurenic acid to 8-hydroxyquinaldic acid. J Biol Chem 233:150–153

    Google Scholar 

  8. van de Kamp JL, Smolen A (1995) Response of kynurenine pathway enzymes to pregnancy and dietary level of vitamin B-6. Pharmacol Biochem Behav 51:753–784

    Article  PubMed  Google Scholar 

  9. Bender DA, Njagi EN, Danielian PS (1990) Tryptophan metabolism in vitamin B6-deficient mice. Br J Nutr 63:27–36

    Article  CAS  PubMed  Google Scholar 

  10. Guilarte TR, Wagner HN Jr (1987) Increased concentrations of the endogenous tryptophan metabolite 3-hydroxykynurenine (3-HK) were measured in the brains of vitamin B6 deficient neonatal rats. J Neurochem 49:1918–1926

    Article  CAS  PubMed  Google Scholar 

  11. Midttun O, Ulvik A, Pedersen E, Ebbing M, Bleie O et al (2011) Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J Nutr 141:611–617

    Article  CAS  PubMed  Google Scholar 

  12. Kimoto M, Ogawa T, Tokushima SK (1991) Accumulation of 3-hydroxy-l-kynurenine sulfate and ethanolamine in urine of the rat injected with 1-aminoproline. J Exp Med 38:37–44

    CAS  Google Scholar 

  13. Rogers KS, Evangelista SJ (1985) 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol inhibit leucine-stimulated insulin release from rat pancreatic islets. Proc Soc Exp Biol Med 178:275–278

    Article  CAS  PubMed  Google Scholar 

  14. Sarkar SA, Wong R, Hackl SI, Moua O, Gill RC et al (2007) Induction of indoleamine 2,3-dioxygenase by interferon-gamma in human islets. Diabetes 56:72–79

    Article  CAS  PubMed  Google Scholar 

  15. Rudzite V, Fuchs D, Kalnins U, Jurika E, Silava A et al (2003) Prognostic value of tryptophan load test followed by serum kynurenine determination. Its comparison with pyridoxal-5-phosphate, kynurenine, homocysteine and neopterin amounts. Adv Exp Med Biol 527:307–315

    Article  CAS  PubMed  Google Scholar 

  16. Yess N, Price JM, Brown RR, Swan PB, Linkswiler H (1964) Vitamin B6 depletion in man: urinary excretion of tryptophan metabolites. J Nutr 84:229–236

    CAS  PubMed  Google Scholar 

  17. Tsubouchi R, Izuta S, Shibata Y (1989) Kynurenine metabolism and xanthurenic acid formation in vitamin B6-deficient rat after tryptophan injection. J Nutr Sci Vitaminol (Tokyo) 35:111–122

    Article  Google Scholar 

  18. Okamoto H (2003) Recent advances in physiological and pathological significance of tryptophan-NAD+ metabolites: lessons from insulin-producing pancreatic beta-cells. Adv Exp Med Biol 527:243–252

    Article  CAS  PubMed  Google Scholar 

  19. Cho-Chung YS, Pitot HC (1967) Feedback control of liver tryptophan pyrrolase. J Biol Chem 242:1192

    CAS  PubMed  Google Scholar 

  20. Shibata Y, Ohta T, Nakatsuka M, Ishizu H, Matsuda Y et al (1996) Taurine and kynureninase. Adv Exp Med Biol 40:55–58

    Article  Google Scholar 

  21. Takeuchi F, Tsubouchi R, Shibata Y (1985) Effect of tryptophan metabolites on the activities of rat liver pyridoxal kinase and pyridoxamine 5-phosphate oxidase in vitro. Biochem J 227:537–544

    CAS  PubMed  Google Scholar 

  22. Murakoshi M, Tanimoto M, Gohda T, Hagiwara S, Ohara I et al (2009) Pleiotropic effect of pyridoxamine on diabetic complications via CD36 expression in KK-Ay/Ta mice. Diabetes Res Clin Pract 83:183–189

    Article  CAS  PubMed  Google Scholar 

  23. Hattori M, Kotake Y, Kotake Y (1984) Studies on the urinary excretion of xanthurenic acid in diabetics. Acta Vitaminol Enzymol 6:221–228

    CAS  PubMed  Google Scholar 

  24. Munipally PK, Agraharm SG, Valavala VK, Gundae S, Turlapati NR (2011) Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients. Arch Physiol Biochem 117(5):254–258

    Article  CAS  PubMed  Google Scholar 

  25. Kotaki Y, Ueda T, Mori T, Igaki S, Hattori M (1975) Abnormal tryptophan metabolism and experimental diabetes by xanthurenic acid (XA). Acta Vitaminol Enzymol 29:236–239

    Google Scholar 

  26. Meyramov G, Korchin V, Kocheryzkina N (1984) Diabetogenic activity of xanturenic acid determined by its chelating properties? Acta Vitaminol Enzymol 6:221–228

    Google Scholar 

  27. Ikeda S, Kotake Y (1986) Urinary excretion of xanthurenic acid and zinc in diabetes: (3). Occurrence of xanthurenic acid-Zn2+ complex in urine of diabetic patients and of experimentally-diabetic rats. Ital J Biochem 35:232–241

    CAS  PubMed  Google Scholar 

  28. Malina HZ, Richter C, Mehl M, Hess OM (2001) Pathological apoptosis by xanthurenic acid, a tryptophan metabolite: activation of cell caspases but not cytoskeleton breakdown. BMC Physiol 1:7–11

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Chen J, Wang Y, Han X, Chen X (2012) Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway. PLoS One 7:e38522. doi:10.1371/journal.pone.0038522

    Article  CAS  PubMed  Google Scholar 

  30. Patterson AD, Bonzo JA, Li F, Krausz KW, Eichler GS, Aslam S, Tigno X, Weinstein JN, Hansen BC, Idle JR, Gonzalez FJ (2011) Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. J Biol Chem 286(22):19511–2233

    Article  CAS  PubMed  Google Scholar 

  31. Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski WA (2008) Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids 35:503–505

    Article  CAS  PubMed  Google Scholar 

  32. Lam CK, Chari M, Su BB, Cheung GW, Kokorovic A, Yang CS, Wang PY, Lai TY, Lam TK (2010) Activation of N-methyl-d-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production. J Biol Chem 285(29):21913–21921

    Article  CAS  PubMed  Google Scholar 

  33. Noto Y, Okamoto H (1978) Inhibition by kynurenine metabolites of proinsulin synthesis in isolated pancreatic islets. Acta Diabetol Lat 15:273–282

    Article  CAS  PubMed  Google Scholar 

  34. Koopmans SJ, Ruis M, Dekker R, Korte M (2009) Surplus dietary tryptophan inhibits stress hormone kinetics and induces insulin resistance in pigs. Physiol Behav 98:402–410

    Article  CAS  PubMed  Google Scholar 

  35. Oxenkrug G (2010) Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: serotonin hypothesis revisited 40 years later. Israel J Psychiatry 47:56–63

    Google Scholar 

  36. Masiello P, Balestreri E, Bacciola D, Bergamini E (1987) Influence of experimental diabetes on brain levels of monoamine neurotransmitters and their precursor amino acids during tryptophan loading. Acta Diabetol Lat 24:43–50

    Article  CAS  PubMed  Google Scholar 

  37. Sucher R, Schroecksnadelb K, Weissb G, Margreitera R, Fuchs D, Brandacher G (2010) Neopterin, a prognostic marker in human malignancies. Cancer Lett 287:13–22

    Article  CAS  PubMed  Google Scholar 

  38. Neurauter G, Schröcksnadel K, Scholl-Bürgi S, Sperner-Unterweger B, Schubert C et al (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9:622–627

    Article  CAS  PubMed  Google Scholar 

  39. Frick B, Schroecksnadel K, Neurauter G (2004) Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem 37:684–687

    Article  CAS  PubMed  Google Scholar 

  40. Fierabracci V, Novelli M, Ciccarone AM, Masiello P, Benzi L, Navalesi R, Bergamini E (1996) Effects of tryptophan load on amino acid metabolism in type 1 diabetic patients. Diabetes Metab 22:51–56

    CAS  PubMed  Google Scholar 

  41. Koenig P, Nagl C, Neurauter G, Schennach H, Brandacher G, Fuchs D (2010) Enhanced degradation of tryptophan in patients on hemodialysis. Clin Nephrol 74:465–470

    Article  CAS  PubMed  Google Scholar 

  42. Bertz L, Barani J, Gottsäter A, Nilsson PM, Mattiasson I, Lindblad B (2006) Are there differences of inflammatory bio-markers between diabetic and non-diabetic patients with critical limb ischemia? Int Angiol 25(4):370–377

    CAS  PubMed  Google Scholar 

  43. Allegri G, Zaccarin D, Ragazzi E, Froldi G, Bertazzo A, Costa CV (2003) Metabolism of tryptophan along the kynurenine pathway in alloxan diabetic rabbits. Adv Exp Med Biol 527:387–393

    Article  CAS  PubMed  Google Scholar 

  44. Manusadzhian VG, Kniazev IA, Vakhrusheva LL (1974) Mass spectrometric identification of xanthurenic acid in pre-diabetes. Vopr Med Khim 20:95–97

    CAS  PubMed  Google Scholar 

  45. Ledochowski M, Murr C, Widner B, Fuchs D (1999) Association between insulin resistance, body mass and neopterin concentrations. Clin Chim Acta 282:115–123

    Article  CAS  PubMed  Google Scholar 

  46. Schennach H, Murr C, Gächter E, Mayersbach P, Schönitzer D, Fuchs D (2002) Factors influencing serum neopterin concentrations in a population of blood donors. Clin Chem 48:643–645

    CAS  PubMed  Google Scholar 

  47. Oxenkrug G, Tucker KL, Requintina P, Summergrad P (2011) Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5′-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult Boston community dwellers of Puerto Rican origin. Am J Neuroprot Neuroregen 3:48–52

    Article  PubMed  Google Scholar 

  48. Shen J, Lai CQ, Mattei J, Ordovas JM, Tucker KL (2010) Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study. Am J Clin Nutr 91:337–342

    Article  CAS  PubMed  Google Scholar 

  49. Könner AC, Brüning JC (2012) Selective insulin and leptin resistance in metabolic disorders. Cell Metab 16:144–152

    Article  PubMed  CAS  Google Scholar 

  50. Szybiński Z, Szurkowska M (2001) Insulinemia—a marker of early diagnosis and control of efficacy of treatment of type II diabetes. Pol Arch Med Wewn 106:793–800

    PubMed  Google Scholar 

  51. Di Betta E, Mittempergher F, Terraroli C, Valloncini E, Salerni B (2007) Severe obesity and insulin resistance. Result obtained by the bilio-pancreatic diversion independently for an associated gastroresection or gastropreservation. Ann Ital Chir 78:201–207

    PubMed  Google Scholar 

  52. Watts SW, Shaw S, Burnett R, Dorrance AM (2011) Indoleamine 2,3-diooxygenase in periaortic fat: mechanisms of inhibition of contraction. Am J Physiol Heart Circ Physiol 301:H1236–H1247

    Article  CAS  PubMed  Google Scholar 

  53. Scarpellini E, Tack JJ (2012) Obesity and metabolic syndrome: an inflammatory condition. Dig Dis 30:148–153

    Article  CAS  PubMed  Google Scholar 

  54. Wolowczuk I, Hennart B, Leloire A, Bessede A, Soichot M et al (2012) Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone. Am J Physiol Regul Integr Comp Physiol 303:R135–R143

    Article  CAS  PubMed  Google Scholar 

  55. Brandacher G (2007) Chronic immune activation underlies morbid obesity: is IDO a key player? Curr Drug Metab 8:289–295

    Article  CAS  PubMed  Google Scholar 

  56. Damms-Machado A, Friedrich A, Kramer KM, Stingel K, Meile T, Küper MA, Königsrainer A, Bischoff SC (2012) Pre- and postoperative nutritional deficiencies in obese patients undergoing laparoscopic sleeve gastrectomy. Obes Surg 22(6):881–9

    Article  PubMed  Google Scholar 

  57. Aasheim ET, Hofsø D, Hjelmesaeth J, Birkeland KI, Bøhmer T (2008) Vitamin status in morbidly obese patients: a cross-sectional study. Am J Clin Nutr 87:362–369

    CAS  PubMed  Google Scholar 

  58. Lapin IP, Oxenkrug GF (1969) Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1:32–39

    Google Scholar 

  59. Hayaishi O (1976) Properties and function of indoleamine 2,3-dioxygenase. J Biochem (Tokyo) 79:13P–21P

    CAS  Google Scholar 

  60. Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotoninergic system. Eur Psychiatry 20:S302–S306

    Article  PubMed  Google Scholar 

  61. Leonard BE, Myint A (2009) The psychoneuroimmunology of depression. Hum Psychopharmacol 24:165–175

    CAS  PubMed  Google Scholar 

  62. Oxenkrug GF, Requintina PJ (2003) Melatonin and jet lag syndrome: experimental model and clinical implications. CNS Spectrs 8:139–148

    Google Scholar 

  63. Oxenkrug G (2011) Interferon-gamma-inducible inflammation: contribution to aging and aging-associated psychiatric disorders. Aging Dis 2:474–486

    PubMed  Google Scholar 

  64. Oxenkrug G, Ratner R (2012) N-Acetylserotonin and aging-associated cognitive impairment and depression. Aging Dis 3:330–338

    PubMed  Google Scholar 

  65. Lapin IP (1973) Kynurenines as probable participants of depression. Pharmakopsychiatr Neuropsychopharmakol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  66. Lapin IP (2003) Neurokynurenines (NEKY) as common neurochemical links of stress and anxiety. Adv Exp Med Biol 527:121–125

    Article  CAS  PubMed  Google Scholar 

  67. Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:664–675

    Article  CAS  PubMed  Google Scholar 

  68. Merete C, Falcon LM, Tucker KL (2008) Vitamin B6 is associated with depressive symptomatology in Massachusetts elders. J Am Coll Nutr 27:421–427

    Article  CAS  PubMed  Google Scholar 

  69. Cazzulo CL, Mangoni A, Mascherpa G (1974) Tryptophan metabolism in affective psychoses. Br J Psychiatry 112:157–162

    Article  Google Scholar 

  70. Demakakos P, Pierce MB, Hardy R (2010) Depressive symptoms and risk of type 2 diabetes in a national sample of middle-aged and older adults: the English longitudinal study of aging. Diabetes Care 33:792–797

    Article  PubMed  Google Scholar 

  71. Rustad JK, Musselman DL, Nemeroff CB (2011) The relationship of depression and diabetes: pathophysiological and treatment implications. Psychoneuroendocrinology 36:1276–1286

    Article  PubMed  Google Scholar 

  72. Campayo A, de Jonge P, Roy JF, Saz P, de la Camara C et al (2010) Depressive disorder and incident diabetes mellitus: the effect of characteristics of depression. Am J Psychiatry 167:580–588

    Article  PubMed  Google Scholar 

  73. Eaton WW, Armenian H, Gallo J, Pratt L, Ford DE (1996) Depression and risk for onset of type II diabetes. A prospective population-based study. Diabetes Care 19:1097–1102

    Article  CAS  PubMed  Google Scholar 

  74. Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238

    Article  CAS  PubMed  Google Scholar 

  75. Oxenkrug G, Perianayagam M, Mikolich D, Requintina P, Shick L et al (2011) Interferon-gamma (+874) T/A genotypes and risk of IFN-alpha-induced depression. J Neural Transm 118:271–274

    Article  CAS  PubMed  Google Scholar 

  76. Oxenkrug GF, Requintina RJ, Mikolich DL, Ruthazer R, Viveiros K et al (2012) Neopterin as a marker of response to antiviral therapy in hepatitis C virus patients. Hepat Res Treat 2012:4, Article ID 619609

    Google Scholar 

  77. Negro F, Alaei M (2009) Hepatitis C virus and type 2 diabetes. World J Gastroenterol 15:1537–1567

    Article  CAS  PubMed  Google Scholar 

  78. Lin CC, Yin MC (2009) Vitamins B depletion, lower iron status and decreased antioxidative defense in patients with chronic hepatitis C treated by pegylated interferon alpha and ribavirin. Clin Nutr 28:34–38

    Article  CAS  PubMed  Google Scholar 

  79. Knobler H, Schattner A (2005) TNF-alpha, chronic hepatitis C and diabetes: a novel triad. QJM 98:1–6

    Article  CAS  PubMed  Google Scholar 

  80. Brischetto R, Corno C, Amore MG, Leotta S, Pavone S et al (2003) Prevalence and significance of type-2 diabetes mellitus in chronic liver disease, correlated with hepatitis C virus. Ann Ital Med Int 18:31–36

    PubMed  Google Scholar 

  81. Imazeki F, Yokosuka O, Fukai K, Kanda T, Kojima H, Saisho H (2008) Prevalence of diabetes mellitus and insulin resistance in patients with chronic hepatitis C: comparison with hepatitis B virus-infected and hepatitis C virus-cleared patients. Liver Int 28:355–362

    Article  CAS  PubMed  Google Scholar 

  82. Fuchs D, Norkrans G, Wejsta R, Reibnegger G, Weiss G et al (1982) Changes of serum neopterin, beta 2-microglobulin and interferon-gamma in patients with chronic hepatitis C treated with interferon-alpha 2b. Eur J Med 1:196–200

    Google Scholar 

  83. Dilman VM (1971) Age-associated elevation of hypothalamic, threshold to feedback control, and its role in development, ageing, and disease. Lancet 1:1211–1219

    Article  CAS  PubMed  Google Scholar 

  84. Dilman VM, Lapin IP, Oxenkrug GF (1979) Serotonin and aging. In: Essman W (ed) Serotonin in health and disease, vol 5. Spectrum, London, pp 111–123

    Google Scholar 

  85. Dilman VM, Anisimov VN (1980) Effect of treatment with phenformin, diphenylhydantoin or l-dopa on life span and tumour incidence in C3H/Sn mice. Gerontology 26:241–246

    Article  CAS  PubMed  Google Scholar 

  86. Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2010) Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle 9:1057–1064

    Article  CAS  PubMed  Google Scholar 

  87. Barzilai N, Ferrucci L (2012) Insulin resistance and aging: a cause or a protective response? J Gerontol A Biol Sci Med Sci 67(12):1329–31

    Article  PubMed  Google Scholar 

  88. Gori AM, Sofi F, Corsi AM, Gazzini A, Sestini I et al (2006) Predictors of vitamin B6 and folate concentrations in older persons: the InCHIANTI study. Clin Chem 52:1318–1324

    Article  CAS  PubMed  Google Scholar 

  89. Selhub J, Troen A, Rosenberg IH (2010) B vitamins and the aging brain. Nutr Rev 68(Suppl 2):S112–S118

    Article  PubMed  Google Scholar 

  90. Spencer M, Jain A, Matteini A, Beamer B, Wang N-Y et al (2010) Serum levels of the immune activation marker neopterin change with age and gender and are modified by race, BMI, and percentage of body fat. J Gerontol A Biol Sci Med Sci 65:858–865

    Article  PubMed  CAS  Google Scholar 

  91. Niinisalo P, Raitala A, Pertovaara M, Oja SS, Lehtimäki T et al (2008) Indoleamine 2,3-dioxygenase activity associates with cardiovascular risk factors: the Health 2000 study. Scand J Clin Lab Invest 68:767–770

    Article  CAS  PubMed  Google Scholar 

  92. Fuchs D, Avanzas P, Arroyo-Espliguero R, Jenny M, Consuegra-Sanchez L, Kaski JC (2009) The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem 16:4644–4653

    Article  CAS  PubMed  Google Scholar 

  93. Dilman VM (1994) Development, aging and disease: a new rationale for an intervention strategy. Harvard Acad Publ Chur, Switzerland, 1994

    Google Scholar 

  94. Vieira-Potter VJ, Strissel KJ, Xie C, Chang E, Bennett G et al (2012) Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity. Endocrinology 153:4266–4277

    Article  PubMed  CAS  Google Scholar 

  95. Deguchi K, Kamada M, Irahara M, Maegawa M, Yamamoto S et al (20010) Postmenopausal changes in production of type 1 and type 2 cytokines and the effects of hormone replacement therapy. Menopause 8:266–273

    Article  CAS  Google Scholar 

  96. Zoghby SM, Abdel-Tawab GA, Girgis LH, Moursi GE, Zeitoun R et al (1975) Functional capacity of the tryptophan-niacin pathway in the premenarchial phase and in the menopausal age. Am J Clin Nutr 28:4–9

    PubMed  Google Scholar 

  97. Schröcksnadel K, Widner B, Bergant A, Neurauter G, Schröcksnadel H, Fuchs D (2003) Tryptophan degradation during and after gestation. Adv Exp Med Biol 527:77–83

    Article  PubMed  Google Scholar 

  98. Kohl C, Walch T, Huber R, Kemmler G, Neurauter G et al (2005) Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J Affect Disord 86:135–142

    Article  CAS  PubMed  Google Scholar 

  99. Bennink HJ, Schreurs WH (1975) Improvement of oral glucose tolerance in gestational diabetes by pyridoxine. Br Med J 3:13–15

    Article  CAS  PubMed  Google Scholar 

  100. Cady SG, Sono M (1991) 1-Methyl-dl-tryptophan, beta-(3-benzofuranyl)-dl-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-dl-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys 291:326–333

    Article  CAS  PubMed  Google Scholar 

  101. Ryu JK, Choi HB, McLarnon JG (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington's disease. Neuroscience 141:1835–1848

    Article  CAS  PubMed  Google Scholar 

  102. O'Connor JC, Lawson MA, André C, Moreau M, Lestage J et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    Article  PubMed  CAS  Google Scholar 

  103. Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altshuler EL et al (2006) A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol 6:903–990

    Article  CAS  PubMed  Google Scholar 

  104. Branconnier R, Cole JO, Oxenkrug GF (1983) Cardiovascular effects of imipramine and bupropion and aged depressive patients. Psychopharmacol Bull 19:658–662

    Google Scholar 

  105. Yu CJ, Zheng MF, Kuang CX, Huang WD, Yang Q (2010) Oren-gedoku-to and its constituents with therapeutic potential in Alzheimer's disease inhibit indoleamine 2, 3-dioxygenase activity in vitro. J Alzheimers Dis 22:257–266

    CAS  PubMed  Google Scholar 

  106. Li GS, Liu XH, Zhu H, Huang L, Liu YL, Ma CM, Qin C (2011) Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver × receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters. Biol Pharm Bull 34:644–654

    Article  CAS  PubMed  Google Scholar 

  107. Zhao HL, Sui Y, Qiao CF, Yip KY, Leung RK et al (2012) Sustained antidiabetic effects of a berberine-containing Chinese herbal medicine through regulation of hepatic gene expression. Diabetes 61:933–943

    Article  CAS  PubMed  Google Scholar 

  108. Di Pierro F, Villanova N, Agostini F, Marzocchi R, Soverini V et al (2012) Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab Syndr Obes 5:213–217

    PubMed  Google Scholar 

  109. Navrotskaya VV, Oxenkrug G, Vorobyova LI, Summergrad P (2012) Berberine prolongs life span and stimulates locomotor activity of Drosophila melanogaster. Am J Plant Sci 3:1037–1040

    Article  Google Scholar 

  110. Oxenkrug G, Navrotskaya V, Vorobyova L, Summergrad P (2012) Minocycline effect on life and health span of Drosophila melanogaster. Aging Dis 3:352–359

    PubMed  Google Scholar 

  111. Nachum-Biala Y, Troen AM (2012) B-vitamins for neuroprotection: narrowing the evidence gap. Biofactors 38:145–150. doi:10.1002/biof.1006

    Article  CAS  PubMed  Google Scholar 

  112. Unoki-Kubota H, Yamagishi S, Takeuchi M, Bujo H, Saito Y (2010) Pyridoxamine dose-dependently decreased fasting insulin levels and improved insulin sensitivity in KK-A(y) mice, a model animal of obese, type 2 diabetes. Protein Pept Lett 17:1177–1181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

GF Oxenkrug is a recipient of NIMH099517 grant.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Oxenkrug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oxenkrug, G. Insulin Resistance and Dysregulation of Tryptophan–Kynurenine and Kynurenine–Nicotinamide Adenine Dinucleotide Metabolic Pathways. Mol Neurobiol 48, 294–301 (2013). https://doi.org/10.1007/s12035-013-8497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8497-4

Keywords

Navigation